sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2205, base_ring=CyclotomicField(84))
M = H._module
chi = DirichletCharacter(H, M([70,63,48]))
pari:[g,chi] = znchar(Mod(1688,2205))
| Modulus: | \(2205\) | |
| Conductor: | \(2205\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(84\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2205}(92,\cdot)\)
\(\chi_{2205}(113,\cdot)\)
\(\chi_{2205}(218,\cdot)\)
\(\chi_{2205}(302,\cdot)\)
\(\chi_{2205}(407,\cdot)\)
\(\chi_{2205}(428,\cdot)\)
\(\chi_{2205}(533,\cdot)\)
\(\chi_{2205}(617,\cdot)\)
\(\chi_{2205}(722,\cdot)\)
\(\chi_{2205}(743,\cdot)\)
\(\chi_{2205}(848,\cdot)\)
\(\chi_{2205}(1037,\cdot)\)
\(\chi_{2205}(1058,\cdot)\)
\(\chi_{2205}(1163,\cdot)\)
\(\chi_{2205}(1247,\cdot)\)
\(\chi_{2205}(1352,\cdot)\)
\(\chi_{2205}(1478,\cdot)\)
\(\chi_{2205}(1562,\cdot)\)
\(\chi_{2205}(1688,\cdot)\)
\(\chi_{2205}(1793,\cdot)\)
\(\chi_{2205}(1877,\cdot)\)
\(\chi_{2205}(1982,\cdot)\)
\(\chi_{2205}(2003,\cdot)\)
\(\chi_{2205}(2192,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1226,442,1081)\) → \((e\left(\frac{5}{6}\right),-i,e\left(\frac{4}{7}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) | \(22\) | \(23\) |
| \( \chi_{ 2205 }(1688, a) \) |
\(1\) | \(1\) | \(e\left(\frac{37}{84}\right)\) | \(e\left(\frac{37}{42}\right)\) | \(e\left(\frac{9}{28}\right)\) | \(e\left(\frac{29}{42}\right)\) | \(e\left(\frac{65}{84}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{15}{28}\right)\) | \(-1\) | \(e\left(\frac{11}{84}\right)\) | \(e\left(\frac{11}{84}\right)\) |
sage:chi.jacobi_sum(n)