sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2205, base_ring=CyclotomicField(84))
M = H._module
chi = DirichletCharacter(H, M([56,21,34]))
pari:[g,chi] = znchar(Mod(1447,2205))
Modulus: | \(2205\) | |
Conductor: | \(2205\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(84\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2205}(157,\cdot)\)
\(\chi_{2205}(187,\cdot)\)
\(\chi_{2205}(283,\cdot)\)
\(\chi_{2205}(502,\cdot)\)
\(\chi_{2205}(598,\cdot)\)
\(\chi_{2205}(628,\cdot)\)
\(\chi_{2205}(787,\cdot)\)
\(\chi_{2205}(817,\cdot)\)
\(\chi_{2205}(943,\cdot)\)
\(\chi_{2205}(1102,\cdot)\)
\(\chi_{2205}(1132,\cdot)\)
\(\chi_{2205}(1228,\cdot)\)
\(\chi_{2205}(1258,\cdot)\)
\(\chi_{2205}(1417,\cdot)\)
\(\chi_{2205}(1447,\cdot)\)
\(\chi_{2205}(1543,\cdot)\)
\(\chi_{2205}(1573,\cdot)\)
\(\chi_{2205}(1732,\cdot)\)
\(\chi_{2205}(1762,\cdot)\)
\(\chi_{2205}(1858,\cdot)\)
\(\chi_{2205}(1888,\cdot)\)
\(\chi_{2205}(2047,\cdot)\)
\(\chi_{2205}(2173,\cdot)\)
\(\chi_{2205}(2203,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1226,442,1081)\) → \((e\left(\frac{2}{3}\right),i,e\left(\frac{17}{42}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) | \(22\) | \(23\) |
\( \chi_{ 2205 }(1447, a) \) |
\(1\) | \(1\) | \(e\left(\frac{37}{84}\right)\) | \(e\left(\frac{37}{42}\right)\) | \(e\left(\frac{9}{28}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{37}{84}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{31}{84}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{25}{84}\right)\) | \(e\left(\frac{13}{28}\right)\) |
sage:chi.jacobi_sum(n)