sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2205, base_ring=CyclotomicField(84))
M = H._module
chi = DirichletCharacter(H, M([70,63,44]))
pari:[g,chi] = znchar(Mod(1418,2205))
Modulus: | \(2205\) | |
Conductor: | \(2205\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(84\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2205}(2,\cdot)\)
\(\chi_{2205}(32,\cdot)\)
\(\chi_{2205}(158,\cdot)\)
\(\chi_{2205}(317,\cdot)\)
\(\chi_{2205}(347,\cdot)\)
\(\chi_{2205}(443,\cdot)\)
\(\chi_{2205}(473,\cdot)\)
\(\chi_{2205}(632,\cdot)\)
\(\chi_{2205}(662,\cdot)\)
\(\chi_{2205}(758,\cdot)\)
\(\chi_{2205}(788,\cdot)\)
\(\chi_{2205}(947,\cdot)\)
\(\chi_{2205}(977,\cdot)\)
\(\chi_{2205}(1073,\cdot)\)
\(\chi_{2205}(1103,\cdot)\)
\(\chi_{2205}(1262,\cdot)\)
\(\chi_{2205}(1388,\cdot)\)
\(\chi_{2205}(1418,\cdot)\)
\(\chi_{2205}(1577,\cdot)\)
\(\chi_{2205}(1607,\cdot)\)
\(\chi_{2205}(1703,\cdot)\)
\(\chi_{2205}(1922,\cdot)\)
\(\chi_{2205}(2018,\cdot)\)
\(\chi_{2205}(2048,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1226,442,1081)\) → \((e\left(\frac{5}{6}\right),-i,e\left(\frac{11}{21}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) | \(22\) | \(23\) |
\( \chi_{ 2205 }(1418, a) \) |
\(1\) | \(1\) | \(e\left(\frac{17}{84}\right)\) | \(e\left(\frac{17}{42}\right)\) | \(e\left(\frac{17}{28}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{17}{84}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{29}{84}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{83}{84}\right)\) | \(e\left(\frac{9}{28}\right)\) |
sage:chi.jacobi_sum(n)