sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2057, base_ring=CyclotomicField(440))
M = H._module
chi = DirichletCharacter(H, M([272,275]))
pari:[g,chi] = znchar(Mod(399,2057))
Modulus: | \(2057\) | |
Conductor: | \(2057\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(440\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2057}(15,\cdot)\)
\(\chi_{2057}(25,\cdot)\)
\(\chi_{2057}(26,\cdot)\)
\(\chi_{2057}(36,\cdot)\)
\(\chi_{2057}(42,\cdot)\)
\(\chi_{2057}(49,\cdot)\)
\(\chi_{2057}(53,\cdot)\)
\(\chi_{2057}(59,\cdot)\)
\(\chi_{2057}(60,\cdot)\)
\(\chi_{2057}(70,\cdot)\)
\(\chi_{2057}(93,\cdot)\)
\(\chi_{2057}(104,\cdot)\)
\(\chi_{2057}(168,\cdot)\)
\(\chi_{2057}(179,\cdot)\)
\(\chi_{2057}(185,\cdot)\)
\(\chi_{2057}(196,\cdot)\)
\(\chi_{2057}(212,\cdot)\)
\(\chi_{2057}(213,\cdot)\)
\(\chi_{2057}(223,\cdot)\)
\(\chi_{2057}(229,\cdot)\)
\(\chi_{2057}(236,\cdot)\)
\(\chi_{2057}(240,\cdot)\)
\(\chi_{2057}(246,\cdot)\)
\(\chi_{2057}(247,\cdot)\)
\(\chi_{2057}(257,\cdot)\)
\(\chi_{2057}(280,\cdot)\)
\(\chi_{2057}(291,\cdot)\)
\(\chi_{2057}(355,\cdot)\)
\(\chi_{2057}(383,\cdot)\)
\(\chi_{2057}(389,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((970,122)\) → \((e\left(\frac{34}{55}\right),e\left(\frac{5}{8}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(12\) |
\( \chi_{ 2057 }(399, a) \) |
\(1\) | \(1\) | \(e\left(\frac{81}{220}\right)\) | \(e\left(\frac{1}{40}\right)\) | \(e\left(\frac{81}{110}\right)\) | \(e\left(\frac{383}{440}\right)\) | \(e\left(\frac{173}{440}\right)\) | \(e\left(\frac{89}{440}\right)\) | \(e\left(\frac{23}{220}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{21}{88}\right)\) | \(e\left(\frac{67}{88}\right)\) |
sage:chi.jacobi_sum(n)