sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2057, base_ring=CyclotomicField(440))
M = H._module
chi = DirichletCharacter(H, M([388,165]))
pari:[g,chi] = znchar(Mod(1052,2057))
| Modulus: | \(2057\) | |
| Conductor: | \(2057\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(440\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2057}(2,\cdot)\)
\(\chi_{2057}(8,\cdot)\)
\(\chi_{2057}(19,\cdot)\)
\(\chi_{2057}(83,\cdot)\)
\(\chi_{2057}(117,\cdot)\)
\(\chi_{2057}(127,\cdot)\)
\(\chi_{2057}(128,\cdot)\)
\(\chi_{2057}(134,\cdot)\)
\(\chi_{2057}(138,\cdot)\)
\(\chi_{2057}(145,\cdot)\)
\(\chi_{2057}(151,\cdot)\)
\(\chi_{2057}(162,\cdot)\)
\(\chi_{2057}(172,\cdot)\)
\(\chi_{2057}(178,\cdot)\)
\(\chi_{2057}(189,\cdot)\)
\(\chi_{2057}(195,\cdot)\)
\(\chi_{2057}(206,\cdot)\)
\(\chi_{2057}(270,\cdot)\)
\(\chi_{2057}(281,\cdot)\)
\(\chi_{2057}(304,\cdot)\)
\(\chi_{2057}(314,\cdot)\)
\(\chi_{2057}(315,\cdot)\)
\(\chi_{2057}(321,\cdot)\)
\(\chi_{2057}(325,\cdot)\)
\(\chi_{2057}(332,\cdot)\)
\(\chi_{2057}(338,\cdot)\)
\(\chi_{2057}(348,\cdot)\)
\(\chi_{2057}(349,\cdot)\)
\(\chi_{2057}(359,\cdot)\)
\(\chi_{2057}(365,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((970,122)\) → \((e\left(\frac{97}{110}\right),e\left(\frac{3}{8}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(12\) |
| \( \chi_{ 2057 }(1052, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{29}{220}\right)\) | \(e\left(\frac{39}{40}\right)\) | \(e\left(\frac{29}{110}\right)\) | \(e\left(\frac{57}{440}\right)\) | \(e\left(\frac{47}{440}\right)\) | \(e\left(\frac{131}{440}\right)\) | \(e\left(\frac{87}{220}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{23}{88}\right)\) | \(e\left(\frac{21}{88}\right)\) |
sage:chi.jacobi_sum(n)