sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(205, base_ring=CyclotomicField(40))
M = H._module
chi = DirichletCharacter(H, M([30,17]))
pari:[g,chi] = znchar(Mod(108,205))
Modulus: | \(205\) | |
Conductor: | \(205\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(40\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{205}(7,\cdot)\)
\(\chi_{205}(12,\cdot)\)
\(\chi_{205}(52,\cdot)\)
\(\chi_{205}(58,\cdot)\)
\(\chi_{205}(63,\cdot)\)
\(\chi_{205}(88,\cdot)\)
\(\chi_{205}(108,\cdot)\)
\(\chi_{205}(112,\cdot)\)
\(\chi_{205}(138,\cdot)\)
\(\chi_{205}(152,\cdot)\)
\(\chi_{205}(157,\cdot)\)
\(\chi_{205}(158,\cdot)\)
\(\chi_{205}(177,\cdot)\)
\(\chi_{205}(183,\cdot)\)
\(\chi_{205}(188,\cdot)\)
\(\chi_{205}(192,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((42,6)\) → \((-i,e\left(\frac{17}{40}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) |
\( \chi_{ 205 }(108, a) \) |
\(1\) | \(1\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{17}{40}\right)\) | \(e\left(\frac{13}{40}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(i\) | \(e\left(\frac{11}{40}\right)\) | \(e\left(\frac{9}{40}\right)\) | \(e\left(\frac{17}{40}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)