Properties

Label 2032.1349
Modulus $2032$
Conductor $2032$
Order $252$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2032, base_ring=CyclotomicField(252)) M = H._module chi = DirichletCharacter(H, M([0,63,200]))
 
Copy content pari:[g,chi] = znchar(Mod(1349,2032))
 

Basic properties

Modulus: \(2032\)
Conductor: \(2032\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(252\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2032.ct

\(\chi_{2032}(13,\cdot)\) \(\chi_{2032}(21,\cdot)\) \(\chi_{2032}(69,\cdot)\) \(\chi_{2032}(157,\cdot)\) \(\chi_{2032}(189,\cdot)\) \(\chi_{2032}(197,\cdot)\) \(\chi_{2032}(269,\cdot)\) \(\chi_{2032}(285,\cdot)\) \(\chi_{2032}(325,\cdot)\) \(\chi_{2032}(333,\cdot)\) \(\chi_{2032}(453,\cdot)\) \(\chi_{2032}(469,\cdot)\) \(\chi_{2032}(485,\cdot)\) \(\chi_{2032}(501,\cdot)\) \(\chi_{2032}(517,\cdot)\) \(\chi_{2032}(525,\cdot)\) \(\chi_{2032}(549,\cdot)\) \(\chi_{2032}(557,\cdot)\) \(\chi_{2032}(589,\cdot)\) \(\chi_{2032}(621,\cdot)\) \(\chi_{2032}(629,\cdot)\) \(\chi_{2032}(653,\cdot)\) \(\chi_{2032}(661,\cdot)\) \(\chi_{2032}(669,\cdot)\) \(\chi_{2032}(677,\cdot)\) \(\chi_{2032}(709,\cdot)\) \(\chi_{2032}(717,\cdot)\) \(\chi_{2032}(733,\cdot)\) \(\chi_{2032}(773,\cdot)\) \(\chi_{2032}(797,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{252})$
Fixed field: Number field defined by a degree 252 polynomial (not computed)

Values on generators

\((255,1525,257)\) → \((1,i,e\left(\frac{50}{63}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 2032 }(1349, a) \) \(1\)\(1\)\(e\left(\frac{137}{252}\right)\)\(e\left(\frac{25}{84}\right)\)\(e\left(\frac{97}{126}\right)\)\(e\left(\frac{11}{126}\right)\)\(e\left(\frac{55}{252}\right)\)\(e\left(\frac{89}{252}\right)\)\(e\left(\frac{53}{63}\right)\)\(e\left(\frac{10}{63}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{79}{252}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2032 }(1349,a) \;\) at \(\;a = \) e.g. 2