sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2032, base_ring=CyclotomicField(252))
M = H._module
chi = DirichletCharacter(H, M([0,189,188]))
pari:[g,chi] = znchar(Mod(13,2032))
| Modulus: | \(2032\) | |
| Conductor: | \(2032\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(252\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2032}(13,\cdot)\)
\(\chi_{2032}(21,\cdot)\)
\(\chi_{2032}(69,\cdot)\)
\(\chi_{2032}(157,\cdot)\)
\(\chi_{2032}(189,\cdot)\)
\(\chi_{2032}(197,\cdot)\)
\(\chi_{2032}(269,\cdot)\)
\(\chi_{2032}(285,\cdot)\)
\(\chi_{2032}(325,\cdot)\)
\(\chi_{2032}(333,\cdot)\)
\(\chi_{2032}(453,\cdot)\)
\(\chi_{2032}(469,\cdot)\)
\(\chi_{2032}(485,\cdot)\)
\(\chi_{2032}(501,\cdot)\)
\(\chi_{2032}(517,\cdot)\)
\(\chi_{2032}(525,\cdot)\)
\(\chi_{2032}(549,\cdot)\)
\(\chi_{2032}(557,\cdot)\)
\(\chi_{2032}(589,\cdot)\)
\(\chi_{2032}(621,\cdot)\)
\(\chi_{2032}(629,\cdot)\)
\(\chi_{2032}(653,\cdot)\)
\(\chi_{2032}(661,\cdot)\)
\(\chi_{2032}(669,\cdot)\)
\(\chi_{2032}(677,\cdot)\)
\(\chi_{2032}(709,\cdot)\)
\(\chi_{2032}(717,\cdot)\)
\(\chi_{2032}(733,\cdot)\)
\(\chi_{2032}(773,\cdot)\)
\(\chi_{2032}(797,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((255,1525,257)\) → \((1,-i,e\left(\frac{47}{63}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
| \( \chi_{ 2032 }(13, a) \) |
\(1\) | \(1\) | \(e\left(\frac{251}{252}\right)\) | \(e\left(\frac{55}{84}\right)\) | \(e\left(\frac{37}{126}\right)\) | \(e\left(\frac{125}{126}\right)\) | \(e\left(\frac{121}{252}\right)\) | \(e\left(\frac{95}{252}\right)\) | \(e\left(\frac{41}{63}\right)\) | \(e\left(\frac{22}{63}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{73}{252}\right)\) |
sage:chi.jacobi_sum(n)