sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2032, base_ring=CyclotomicField(252))
M = H._module
chi = DirichletCharacter(H, M([0,63,188]))
         
     
    
    
        
        pari:[g,chi] = znchar(Mod(1029,2032))
         
     
    
  
   | Modulus: |  \(2032\) |   |  
   | Conductor: |  \(2032\) |  
    
         
        sage:chi.conductor()
          
     
    
    
         
        pari:znconreyconductor(g,chi)
          
     
    
 |  
   | Order: |  \(252\) |  
    
         
        sage:chi.multiplicative_order()
          
     
    
    
         
        pari:charorder(g,chi)
          
     
    
 |  
   | Real: |   no  |  
   | Primitive: |   yes |   
    
         
        sage:chi.is_primitive()
          
     
    
    
         
        pari:#znconreyconductor(g,chi)==1
          
     
    
 |  
     | Minimal:  |  yes |  
       | Parity:  |  even |  
    
         
        sage:chi.is_odd()
          
     
    
    
         
        pari:zncharisodd(g,chi)
          
     
    
 |  
   
  \(\chi_{2032}(13,\cdot)\)
  \(\chi_{2032}(21,\cdot)\)
  \(\chi_{2032}(69,\cdot)\)
  \(\chi_{2032}(157,\cdot)\)
  \(\chi_{2032}(189,\cdot)\)
  \(\chi_{2032}(197,\cdot)\)
  \(\chi_{2032}(269,\cdot)\)
  \(\chi_{2032}(285,\cdot)\)
  \(\chi_{2032}(325,\cdot)\)
  \(\chi_{2032}(333,\cdot)\)
  \(\chi_{2032}(453,\cdot)\)
  \(\chi_{2032}(469,\cdot)\)
  \(\chi_{2032}(485,\cdot)\)
  \(\chi_{2032}(501,\cdot)\)
  \(\chi_{2032}(517,\cdot)\)
  \(\chi_{2032}(525,\cdot)\)
  \(\chi_{2032}(549,\cdot)\)
  \(\chi_{2032}(557,\cdot)\)
  \(\chi_{2032}(589,\cdot)\)
  \(\chi_{2032}(621,\cdot)\)
  \(\chi_{2032}(629,\cdot)\)
  \(\chi_{2032}(653,\cdot)\)
  \(\chi_{2032}(661,\cdot)\)
  \(\chi_{2032}(669,\cdot)\)
  \(\chi_{2032}(677,\cdot)\)
  \(\chi_{2032}(709,\cdot)\)
  \(\chi_{2032}(717,\cdot)\)
  \(\chi_{2032}(733,\cdot)\)
  \(\chi_{2032}(773,\cdot)\)
  \(\chi_{2032}(797,\cdot)\)
 ... 
    
        
        sage:chi.galois_orbit()
         
     
    
    
        
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((255,1525,257)\) → \((1,i,e\left(\frac{47}{63}\right))\)
  
    
      
        | \(a\) | 
        \(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |       
    
    
      | \( \chi_{ 2032 }(1029, a) \) | 
      \(1\) | \(1\) | \(e\left(\frac{125}{252}\right)\) | \(e\left(\frac{13}{84}\right)\) | \(e\left(\frac{37}{126}\right)\) | \(e\left(\frac{125}{126}\right)\) | \(e\left(\frac{247}{252}\right)\) | \(e\left(\frac{221}{252}\right)\) | \(e\left(\frac{41}{63}\right)\) | \(e\left(\frac{22}{63}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{199}{252}\right)\) |     
  
 
    
        
        sage:chi.jacobi_sum(n)