sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2028, base_ring=CyclotomicField(78))
M = H._module
chi = DirichletCharacter(H, M([39,39,5]))
pari:[g,chi] = znchar(Mod(179,2028))
Modulus: | \(2028\) | |
Conductor: | \(2028\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(78\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2028}(95,\cdot)\)
\(\chi_{2028}(179,\cdot)\)
\(\chi_{2028}(251,\cdot)\)
\(\chi_{2028}(335,\cdot)\)
\(\chi_{2028}(407,\cdot)\)
\(\chi_{2028}(491,\cdot)\)
\(\chi_{2028}(563,\cdot)\)
\(\chi_{2028}(647,\cdot)\)
\(\chi_{2028}(719,\cdot)\)
\(\chi_{2028}(803,\cdot)\)
\(\chi_{2028}(875,\cdot)\)
\(\chi_{2028}(959,\cdot)\)
\(\chi_{2028}(1031,\cdot)\)
\(\chi_{2028}(1115,\cdot)\)
\(\chi_{2028}(1187,\cdot)\)
\(\chi_{2028}(1271,\cdot)\)
\(\chi_{2028}(1343,\cdot)\)
\(\chi_{2028}(1427,\cdot)\)
\(\chi_{2028}(1583,\cdot)\)
\(\chi_{2028}(1655,\cdot)\)
\(\chi_{2028}(1739,\cdot)\)
\(\chi_{2028}(1811,\cdot)\)
\(\chi_{2028}(1895,\cdot)\)
\(\chi_{2028}(1967,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1015,677,1861)\) → \((-1,-1,e\left(\frac{5}{78}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
\( \chi_{ 2028 }(179, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{14}{39}\right)\) | \(e\left(\frac{47}{78}\right)\) | \(e\left(\frac{67}{78}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{5}{78}\right)\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{17}{39}\right)\) |
sage:chi.jacobi_sum(n)