Properties

Label 1976.1109
Modulus $1976$
Conductor $1976$
Order $6$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1976, base_ring=CyclotomicField(6)) M = H._module chi = DirichletCharacter(H, M([0,3,1,2]))
 
Copy content pari:[g,chi] = znchar(Mod(1109,1976))
 

Basic properties

Modulus: \(1976\)
Conductor: \(1976\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(6\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1976.be

\(\chi_{1976}(1037,\cdot)\) \(\chi_{1976}(1109,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\mathbb{Q}(\zeta_3)\)
Fixed field: 6.6.24774284827136.1

Values on generators

\((495,989,457,1769)\) → \((1,-1,e\left(\frac{1}{6}\right),e\left(\frac{1}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(15\)\(17\)\(21\)\(23\)\(25\)
\( \chi_{ 1976 }(1109, a) \) \(1\)\(1\)\(-1\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{5}{6}\right)\)\(1\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{2}{3}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1976 }(1109,a) \;\) at \(\;a = \) e.g. 2