sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(19355, base_ring=CyclotomicField(1092))
M = H._module
chi = DirichletCharacter(H, M([819,442,798]))
pari:[g,chi] = znchar(Mod(17078,19355))
| Modulus: | \(19355\) | |
| Conductor: | \(19355\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(1092\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{19355}(12,\cdot)\)
\(\chi_{19355}(17,\cdot)\)
\(\chi_{19355}(33,\cdot)\)
\(\chi_{19355}(173,\cdot)\)
\(\chi_{19355}(278,\cdot)\)
\(\chi_{19355}(453,\cdot)\)
\(\chi_{19355}(488,\cdot)\)
\(\chi_{19355}(507,\cdot)\)
\(\chi_{19355}(647,\cdot)\)
\(\chi_{19355}(703,\cdot)\)
\(\chi_{19355}(738,\cdot)\)
\(\chi_{19355}(752,\cdot)\)
\(\chi_{19355}(768,\cdot)\)
\(\chi_{19355}(782,\cdot)\)
\(\chi_{19355}(817,\cdot)\)
\(\chi_{19355}(927,\cdot)\)
\(\chi_{19355}(1088,\cdot)\)
\(\chi_{19355}(1118,\cdot)\)
\(\chi_{19355}(1123,\cdot)\)
\(\chi_{19355}(1167,\cdot)\)
\(\chi_{19355}(1202,\cdot)\)
\(\chi_{19355}(1242,\cdot)\)
\(\chi_{19355}(1333,\cdot)\)
\(\chi_{19355}(1412,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((3872,6716,4901)\) → \((-i,e\left(\frac{17}{42}\right),e\left(\frac{19}{26}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) | \(16\) |
| \( \chi_{ 19355 }(17078, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{215}{1092}\right)\) | \(e\left(\frac{421}{1092}\right)\) | \(e\left(\frac{215}{546}\right)\) | \(e\left(\frac{53}{91}\right)\) | \(e\left(\frac{215}{364}\right)\) | \(e\left(\frac{421}{546}\right)\) | \(e\left(\frac{241}{273}\right)\) | \(e\left(\frac{851}{1092}\right)\) | \(e\left(\frac{165}{364}\right)\) | \(e\left(\frac{215}{273}\right)\) |
sage:chi.jacobi_sum(n)