Character group
| ||
Order | = | 54912 |
| ||
Structure | = | \(C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{1716}\) |
| ||
Generators | = | $\chi_{186576}(69967,\cdot)$, $\chi_{186576}(46645,\cdot)$, $\chi_{186576}(124385,\cdot)$, $\chi_{186576}(85009,\cdot)$, $\chi_{186576}(48673,\cdot)$ |
First 32 of 54912 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(17\) | \(19\) | \(25\) | \(29\) | \(31\) | \(35\) | \(37\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{186576}(1,\cdot)\) | 186576.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{186576}(5,\cdot)\) | 186576.vh | 572 | yes | \(-1\) | \(1\) | \(e\left(\frac{45}{143}\right)\) | \(e\left(\frac{307}{572}\right)\) | \(e\left(\frac{29}{286}\right)\) | \(e\left(\frac{69}{286}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{90}{143}\right)\) | \(e\left(\frac{215}{572}\right)\) | \(e\left(\frac{277}{572}\right)\) | \(e\left(\frac{487}{572}\right)\) | \(e\left(\frac{131}{143}\right)\) |
\(\chi_{186576}(7,\cdot)\) | 186576.xp | 1716 | no | \(-1\) | \(1\) | \(e\left(\frac{307}{572}\right)\) | \(e\left(\frac{515}{1716}\right)\) | \(e\left(\frac{721}{1716}\right)\) | \(e\left(\frac{80}{429}\right)\) | \(e\left(\frac{71}{132}\right)\) | \(e\left(\frac{21}{286}\right)\) | \(e\left(\frac{413}{858}\right)\) | \(e\left(\frac{49}{572}\right)\) | \(e\left(\frac{359}{429}\right)\) | \(e\left(\frac{355}{1716}\right)\) |
\(\chi_{186576}(11,\cdot)\) | 186576.xb | 1716 | yes | \(1\) | \(1\) | \(e\left(\frac{29}{286}\right)\) | \(e\left(\frac{721}{1716}\right)\) | \(e\left(\frac{805}{858}\right)\) | \(e\left(\frac{653}{858}\right)\) | \(e\left(\frac{10}{33}\right)\) | \(e\left(\frac{29}{143}\right)\) | \(e\left(\frac{41}{1716}\right)\) | \(e\left(\frac{469}{572}\right)\) | \(e\left(\frac{895}{1716}\right)\) | \(e\left(\frac{463}{858}\right)\) |
\(\chi_{186576}(17,\cdot)\) | 186576.vu | 858 | no | \(1\) | \(1\) | \(e\left(\frac{69}{286}\right)\) | \(e\left(\frac{80}{429}\right)\) | \(e\left(\frac{653}{858}\right)\) | \(e\left(\frac{158}{429}\right)\) | \(e\left(\frac{20}{33}\right)\) | \(e\left(\frac{69}{143}\right)\) | \(e\left(\frac{569}{858}\right)\) | \(e\left(\frac{161}{286}\right)\) | \(e\left(\frac{367}{858}\right)\) | \(e\left(\frac{1}{429}\right)\) |
\(\chi_{186576}(19,\cdot)\) | 186576.pb | 132 | no | \(-1\) | \(1\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{71}{132}\right)\) | \(e\left(\frac{10}{33}\right)\) | \(e\left(\frac{20}{33}\right)\) | \(e\left(\frac{2}{33}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{25}{132}\right)\) | \(e\left(\frac{15}{44}\right)\) | \(e\left(\frac{95}{132}\right)\) | \(e\left(\frac{65}{66}\right)\) |
\(\chi_{186576}(25,\cdot)\) | 186576.tj | 286 | no | \(1\) | \(1\) | \(e\left(\frac{90}{143}\right)\) | \(e\left(\frac{21}{286}\right)\) | \(e\left(\frac{29}{143}\right)\) | \(e\left(\frac{69}{143}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{37}{143}\right)\) | \(e\left(\frac{215}{286}\right)\) | \(e\left(\frac{277}{286}\right)\) | \(e\left(\frac{201}{286}\right)\) | \(e\left(\frac{119}{143}\right)\) |
\(\chi_{186576}(29,\cdot)\) | 186576.yg | 1716 | yes | \(-1\) | \(1\) | \(e\left(\frac{215}{572}\right)\) | \(e\left(\frac{413}{858}\right)\) | \(e\left(\frac{41}{1716}\right)\) | \(e\left(\frac{569}{858}\right)\) | \(e\left(\frac{25}{132}\right)\) | \(e\left(\frac{215}{286}\right)\) | \(e\left(\frac{1259}{1716}\right)\) | \(e\left(\frac{42}{143}\right)\) | \(e\left(\frac{1471}{1716}\right)\) | \(e\left(\frac{1115}{1716}\right)\) |
\(\chi_{186576}(31,\cdot)\) | 186576.uo | 572 | no | \(1\) | \(1\) | \(e\left(\frac{277}{572}\right)\) | \(e\left(\frac{49}{572}\right)\) | \(e\left(\frac{469}{572}\right)\) | \(e\left(\frac{161}{286}\right)\) | \(e\left(\frac{15}{44}\right)\) | \(e\left(\frac{277}{286}\right)\) | \(e\left(\frac{42}{143}\right)\) | \(e\left(\frac{551}{572}\right)\) | \(e\left(\frac{163}{286}\right)\) | \(e\left(\frac{31}{572}\right)\) |
\(\chi_{186576}(35,\cdot)\) | 186576.xg | 1716 | yes | \(1\) | \(1\) | \(e\left(\frac{487}{572}\right)\) | \(e\left(\frac{359}{429}\right)\) | \(e\left(\frac{895}{1716}\right)\) | \(e\left(\frac{367}{858}\right)\) | \(e\left(\frac{95}{132}\right)\) | \(e\left(\frac{201}{286}\right)\) | \(e\left(\frac{1471}{1716}\right)\) | \(e\left(\frac{163}{286}\right)\) | \(e\left(\frac{1181}{1716}\right)\) | \(e\left(\frac{211}{1716}\right)\) |
\(\chi_{186576}(37,\cdot)\) | 186576.ym | 1716 | no | \(1\) | \(1\) | \(e\left(\frac{131}{143}\right)\) | \(e\left(\frac{355}{1716}\right)\) | \(e\left(\frac{463}{858}\right)\) | \(e\left(\frac{1}{429}\right)\) | \(e\left(\frac{65}{66}\right)\) | \(e\left(\frac{119}{143}\right)\) | \(e\left(\frac{1115}{1716}\right)\) | \(e\left(\frac{31}{572}\right)\) | \(e\left(\frac{211}{1716}\right)\) | \(e\left(\frac{391}{858}\right)\) |
\(\chi_{186576}(41,\cdot)\) | 186576.xl | 1716 | no | \(1\) | \(1\) | \(e\left(\frac{257}{572}\right)\) | \(e\left(\frac{1141}{1716}\right)\) | \(e\left(\frac{53}{1716}\right)\) | \(e\left(\frac{373}{429}\right)\) | \(e\left(\frac{13}{132}\right)\) | \(e\left(\frac{257}{286}\right)\) | \(e\left(\frac{263}{429}\right)\) | \(e\left(\frac{409}{572}\right)\) | \(e\left(\frac{49}{429}\right)\) | \(e\left(\frac{395}{1716}\right)\) |
\(\chi_{186576}(43,\cdot)\) | 186576.xi | 1716 | no | \(1\) | \(1\) | \(e\left(\frac{295}{572}\right)\) | \(e\left(\frac{428}{429}\right)\) | \(e\left(\frac{595}{1716}\right)\) | \(e\left(\frac{661}{858}\right)\) | \(e\left(\frac{65}{132}\right)\) | \(e\left(\frac{9}{286}\right)\) | \(e\left(\frac{211}{1716}\right)\) | \(e\left(\frac{41}{143}\right)\) | \(e\left(\frac{881}{1716}\right)\) | \(e\left(\frac{193}{1716}\right)\) |
\(\chi_{186576}(47,\cdot)\) | 186576.lj | 52 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{52}\right)\) | \(e\left(\frac{37}{52}\right)\) | \(e\left(\frac{31}{52}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(-i\) | \(e\left(\frac{7}{26}\right)\) | \(e\left(\frac{17}{26}\right)\) | \(e\left(\frac{51}{52}\right)\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{51}{52}\right)\) |
\(\chi_{186576}(49,\cdot)\) | 186576.wb | 858 | no | \(1\) | \(1\) | \(e\left(\frac{21}{286}\right)\) | \(e\left(\frac{515}{858}\right)\) | \(e\left(\frac{721}{858}\right)\) | \(e\left(\frac{160}{429}\right)\) | \(e\left(\frac{5}{66}\right)\) | \(e\left(\frac{21}{143}\right)\) | \(e\left(\frac{413}{429}\right)\) | \(e\left(\frac{49}{286}\right)\) | \(e\left(\frac{289}{429}\right)\) | \(e\left(\frac{355}{858}\right)\) |
\(\chi_{186576}(53,\cdot)\) | 186576.vg | 572 | yes | \(1\) | \(1\) | \(e\left(\frac{307}{572}\right)\) | \(e\left(\frac{31}{143}\right)\) | \(e\left(\frac{431}{572}\right)\) | \(e\left(\frac{122}{143}\right)\) | \(e\left(\frac{31}{44}\right)\) | \(e\left(\frac{21}{286}\right)\) | \(e\left(\frac{323}{572}\right)\) | \(e\left(\frac{48}{143}\right)\) | \(e\left(\frac{431}{572}\right)\) | \(e\left(\frac{309}{572}\right)\) |
\(\chi_{186576}(55,\cdot)\) | 186576.vy | 858 | no | \(-1\) | \(1\) | \(e\left(\frac{119}{286}\right)\) | \(e\left(\frac{821}{858}\right)\) | \(e\left(\frac{17}{429}\right)\) | \(e\left(\frac{1}{429}\right)\) | \(e\left(\frac{16}{33}\right)\) | \(e\left(\frac{119}{143}\right)\) | \(e\left(\frac{343}{858}\right)\) | \(e\left(\frac{87}{286}\right)\) | \(e\left(\frac{160}{429}\right)\) | \(e\left(\frac{391}{858}\right)\) |
\(\chi_{186576}(59,\cdot)\) | 186576.yi | 1716 | yes | \(-1\) | \(1\) | \(e\left(\frac{58}{143}\right)\) | \(e\left(\frac{167}{1716}\right)\) | \(e\left(\frac{37}{429}\right)\) | \(e\left(\frac{305}{429}\right)\) | \(e\left(\frac{25}{66}\right)\) | \(e\left(\frac{116}{143}\right)\) | \(e\left(\frac{1165}{1716}\right)\) | \(e\left(\frac{17}{572}\right)\) | \(e\left(\frac{863}{1716}\right)\) | \(e\left(\frac{211}{429}\right)\) |
\(\chi_{186576}(61,\cdot)\) | 186576.xj | 1716 | no | \(-1\) | \(1\) | \(e\left(\frac{343}{572}\right)\) | \(e\left(\frac{89}{429}\right)\) | \(e\left(\frac{241}{1716}\right)\) | \(e\left(\frac{373}{858}\right)\) | \(e\left(\frac{23}{132}\right)\) | \(e\left(\frac{57}{286}\right)\) | \(e\left(\frac{97}{1716}\right)\) | \(e\left(\frac{69}{143}\right)\) | \(e\left(\frac{1385}{1716}\right)\) | \(e\left(\frac{841}{1716}\right)\) |
\(\chi_{186576}(67,\cdot)\) | 186576.yj | 1716 | no | \(-1\) | \(1\) | \(e\left(\frac{68}{143}\right)\) | \(e\left(\frac{1039}{1716}\right)\) | \(e\left(\frac{428}{429}\right)\) | \(e\left(\frac{328}{429}\right)\) | \(e\left(\frac{1}{33}\right)\) | \(e\left(\frac{136}{143}\right)\) | \(e\left(\frac{641}{1716}\right)\) | \(e\left(\frac{15}{572}\right)\) | \(e\left(\frac{139}{1716}\right)\) | \(e\left(\frac{835}{858}\right)\) |
\(\chi_{186576}(71,\cdot)\) | 186576.xn | 1716 | no | \(-1\) | \(1\) | \(e\left(\frac{569}{572}\right)\) | \(e\left(\frac{335}{1716}\right)\) | \(e\left(\frac{1327}{1716}\right)\) | \(e\left(\frac{152}{429}\right)\) | \(e\left(\frac{59}{132}\right)\) | \(e\left(\frac{283}{286}\right)\) | \(e\left(\frac{328}{429}\right)\) | \(e\left(\frac{279}{572}\right)\) | \(e\left(\frac{163}{858}\right)\) | \(e\left(\frac{31}{1716}\right)\) |
\(\chi_{186576}(73,\cdot)\) | 186576.uj | 572 | no | \(-1\) | \(1\) | \(e\left(\frac{357}{572}\right)\) | \(e\left(\frac{249}{572}\right)\) | \(e\left(\frac{463}{572}\right)\) | \(e\left(\frac{1}{286}\right)\) | \(e\left(\frac{21}{44}\right)\) | \(e\left(\frac{71}{286}\right)\) | \(e\left(\frac{243}{286}\right)\) | \(e\left(\frac{547}{572}\right)\) | \(e\left(\frac{17}{286}\right)\) | \(e\left(\frac{391}{572}\right)\) |
\(\chi_{186576}(77,\cdot)\) | 186576.uz | 572 | yes | \(-1\) | \(1\) | \(e\left(\frac{365}{572}\right)\) | \(e\left(\frac{103}{143}\right)\) | \(e\left(\frac{205}{572}\right)\) | \(e\left(\frac{271}{286}\right)\) | \(e\left(\frac{37}{44}\right)\) | \(e\left(\frac{79}{286}\right)\) | \(e\left(\frac{289}{572}\right)\) | \(e\left(\frac{259}{286}\right)\) | \(e\left(\frac{205}{572}\right)\) | \(e\left(\frac{427}{572}\right)\) |
\(\chi_{186576}(79,\cdot)\) | 186576.sz | 286 | no | \(1\) | \(1\) | \(e\left(\frac{149}{286}\right)\) | \(e\left(\frac{79}{143}\right)\) | \(e\left(\frac{82}{143}\right)\) | \(e\left(\frac{119}{286}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{6}{143}\right)\) | \(e\left(\frac{87}{143}\right)\) | \(e\left(\frac{157}{286}\right)\) | \(e\left(\frac{21}{286}\right)\) | \(e\left(\frac{27}{286}\right)\) |
\(\chi_{186576}(83,\cdot)\) | 186576.tt | 572 | yes | \(1\) | \(1\) | \(e\left(\frac{229}{286}\right)\) | \(e\left(\frac{1}{572}\right)\) | \(e\left(\frac{15}{286}\right)\) | \(e\left(\frac{85}{286}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{86}{143}\right)\) | \(e\left(\frac{269}{572}\right)\) | \(e\left(\frac{163}{572}\right)\) | \(e\left(\frac{459}{572}\right)\) | \(e\left(\frac{101}{286}\right)\) |
\(\chi_{186576}(85,\cdot)\) | 186576.wx | 1716 | no | \(-1\) | \(1\) | \(e\left(\frac{159}{286}\right)\) | \(e\left(\frac{1241}{1716}\right)\) | \(e\left(\frac{370}{429}\right)\) | \(e\left(\frac{523}{858}\right)\) | \(e\left(\frac{26}{33}\right)\) | \(e\left(\frac{16}{143}\right)\) | \(e\left(\frac{67}{1716}\right)\) | \(e\left(\frac{27}{572}\right)\) | \(e\left(\frac{479}{1716}\right)\) | \(e\left(\frac{394}{429}\right)\) |
\(\chi_{186576}(89,\cdot)\) | 186576.pr | 132 | no | \(-1\) | \(1\) | \(e\left(\frac{21}{44}\right)\) | \(e\left(\frac{97}{132}\right)\) | \(e\left(\frac{17}{132}\right)\) | \(e\left(\frac{17}{66}\right)\) | \(e\left(\frac{109}{132}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{14}{33}\right)\) | \(e\left(\frac{27}{44}\right)\) | \(e\left(\frac{7}{33}\right)\) | \(e\left(\frac{47}{132}\right)\) |
\(\chi_{186576}(95,\cdot)\) | 186576.wl | 858 | no | \(1\) | \(1\) | \(e\left(\frac{71}{143}\right)\) | \(e\left(\frac{32}{429}\right)\) | \(e\left(\frac{347}{858}\right)\) | \(e\left(\frac{727}{858}\right)\) | \(e\left(\frac{8}{33}\right)\) | \(e\left(\frac{142}{143}\right)\) | \(e\left(\frac{485}{858}\right)\) | \(e\left(\frac{118}{143}\right)\) | \(e\left(\frac{245}{429}\right)\) | \(e\left(\frac{773}{858}\right)\) |
\(\chi_{186576}(97,\cdot)\) | 186576.xk | 1716 | no | \(1\) | \(1\) | \(e\left(\frac{15}{572}\right)\) | \(e\left(\frac{899}{1716}\right)\) | \(e\left(\frac{1087}{1716}\right)\) | \(e\left(\frac{98}{429}\right)\) | \(e\left(\frac{101}{132}\right)\) | \(e\left(\frac{15}{286}\right)\) | \(e\left(\frac{76}{429}\right)\) | \(e\left(\frac{321}{572}\right)\) | \(e\left(\frac{236}{429}\right)\) | \(e\left(\frac{703}{1716}\right)\) |
\(\chi_{186576}(101,\cdot)\) | 186576.xh | 1716 | yes | \(-1\) | \(1\) | \(e\left(\frac{139}{572}\right)\) | \(e\left(\frac{64}{429}\right)\) | \(e\left(\frac{101}{1716}\right)\) | \(e\left(\frac{167}{858}\right)\) | \(e\left(\frac{97}{132}\right)\) | \(e\left(\frac{139}{286}\right)\) | \(e\left(\frac{653}{1716}\right)\) | \(e\left(\frac{43}{286}\right)\) | \(e\left(\frac{673}{1716}\right)\) | \(e\left(\frac{947}{1716}\right)\) |
\(\chi_{186576}(103,\cdot)\) | 186576.sr | 286 | no | \(1\) | \(1\) | \(e\left(\frac{161}{286}\right)\) | \(e\left(\frac{45}{286}\right)\) | \(e\left(\frac{103}{143}\right)\) | \(e\left(\frac{71}{286}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{18}{143}\right)\) | \(e\left(\frac{93}{286}\right)\) | \(e\left(\frac{21}{143}\right)\) | \(e\left(\frac{103}{143}\right)\) | \(e\left(\frac{81}{286}\right)\) |
\(\chi_{186576}(107,\cdot)\) | 186576.ya | 1716 | yes | \(-1\) | \(1\) | \(e\left(\frac{167}{572}\right)\) | \(e\left(\frac{233}{858}\right)\) | \(e\left(\frac{395}{1716}\right)\) | \(e\left(\frac{214}{429}\right)\) | \(e\left(\frac{67}{132}\right)\) | \(e\left(\frac{167}{286}\right)\) | \(e\left(\frac{1373}{1716}\right)\) | \(e\left(\frac{171}{286}\right)\) | \(e\left(\frac{967}{1716}\right)\) | \(e\left(\frac{467}{1716}\right)\) |