sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1848, base_ring=CyclotomicField(6))
M = H._module
chi = DirichletCharacter(H, M([3,3,3,4,3]))
pari:[g,chi] = znchar(Mod(1187,1848))
| Modulus: | \(1848\) | |
| Conductor: | \(1848\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(6\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1848}(1187,\cdot)\)
\(\chi_{1848}(1451,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((463,925,617,1585,673)\) → \((-1,-1,-1,e\left(\frac{2}{3}\right),-1)\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) |
| \( \chi_{ 1848 }(1187, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) |
sage:chi.jacobi_sum(n)