Character group
|
| ||
| Order | = | 9720 |
|
| ||
| Structure | = | \(C_{2}\times C_{4860}\) |
|
| ||
| Generators | = | $\chi_{18225}(4376,\cdot)$, $\chi_{18225}(13852,\cdot)$ |
First 32 of 9720 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
| Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(19\) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| \(\chi_{18225}(1,\cdot)\) | 18225.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
| \(\chi_{18225}(2,\cdot)\) | 18225.cs | 4860 | yes | \(1\) | \(1\) | \(e\left(\frac{253}{4860}\right)\) | \(e\left(\frac{253}{2430}\right)\) | \(e\left(\frac{59}{972}\right)\) | \(e\left(\frac{253}{1620}\right)\) | \(e\left(\frac{929}{2430}\right)\) | \(e\left(\frac{3077}{4860}\right)\) | \(e\left(\frac{137}{1215}\right)\) | \(e\left(\frac{253}{1215}\right)\) | \(e\left(\frac{1163}{1620}\right)\) | \(e\left(\frac{449}{810}\right)\) |
| \(\chi_{18225}(4,\cdot)\) | 18225.cp | 2430 | yes | \(1\) | \(1\) | \(e\left(\frac{253}{2430}\right)\) | \(e\left(\frac{253}{1215}\right)\) | \(e\left(\frac{59}{486}\right)\) | \(e\left(\frac{253}{810}\right)\) | \(e\left(\frac{929}{1215}\right)\) | \(e\left(\frac{647}{2430}\right)\) | \(e\left(\frac{274}{1215}\right)\) | \(e\left(\frac{506}{1215}\right)\) | \(e\left(\frac{353}{810}\right)\) | \(e\left(\frac{44}{405}\right)\) |
| \(\chi_{18225}(7,\cdot)\) | 18225.ck | 972 | no | \(-1\) | \(1\) | \(e\left(\frac{59}{972}\right)\) | \(e\left(\frac{59}{486}\right)\) | \(e\left(\frac{647}{972}\right)\) | \(e\left(\frac{59}{324}\right)\) | \(e\left(\frac{104}{243}\right)\) | \(e\left(\frac{877}{972}\right)\) | \(e\left(\frac{353}{486}\right)\) | \(e\left(\frac{59}{243}\right)\) | \(e\left(\frac{1}{324}\right)\) | \(e\left(\frac{49}{162}\right)\) |
| \(\chi_{18225}(8,\cdot)\) | 18225.cn | 1620 | no | \(1\) | \(1\) | \(e\left(\frac{253}{1620}\right)\) | \(e\left(\frac{253}{810}\right)\) | \(e\left(\frac{59}{324}\right)\) | \(e\left(\frac{253}{540}\right)\) | \(e\left(\frac{119}{810}\right)\) | \(e\left(\frac{1457}{1620}\right)\) | \(e\left(\frac{137}{405}\right)\) | \(e\left(\frac{253}{405}\right)\) | \(e\left(\frac{83}{540}\right)\) | \(e\left(\frac{179}{270}\right)\) |
| \(\chi_{18225}(11,\cdot)\) | 18225.cq | 2430 | yes | \(-1\) | \(1\) | \(e\left(\frac{929}{2430}\right)\) | \(e\left(\frac{929}{1215}\right)\) | \(e\left(\frac{104}{243}\right)\) | \(e\left(\frac{119}{810}\right)\) | \(e\left(\frac{1439}{2430}\right)\) | \(e\left(\frac{638}{1215}\right)\) | \(e\left(\frac{1969}{2430}\right)\) | \(e\left(\frac{643}{1215}\right)\) | \(e\left(\frac{499}{810}\right)\) | \(e\left(\frac{232}{405}\right)\) |
| \(\chi_{18225}(13,\cdot)\) | 18225.ct | 4860 | yes | \(-1\) | \(1\) | \(e\left(\frac{3077}{4860}\right)\) | \(e\left(\frac{647}{2430}\right)\) | \(e\left(\frac{877}{972}\right)\) | \(e\left(\frac{1457}{1620}\right)\) | \(e\left(\frac{638}{1215}\right)\) | \(e\left(\frac{4123}{4860}\right)\) | \(e\left(\frac{1301}{2430}\right)\) | \(e\left(\frac{647}{1215}\right)\) | \(e\left(\frac{1447}{1620}\right)\) | \(e\left(\frac{271}{810}\right)\) |
| \(\chi_{18225}(14,\cdot)\) | 18225.cr | 2430 | yes | \(-1\) | \(1\) | \(e\left(\frac{137}{1215}\right)\) | \(e\left(\frac{274}{1215}\right)\) | \(e\left(\frac{353}{486}\right)\) | \(e\left(\frac{137}{405}\right)\) | \(e\left(\frac{1969}{2430}\right)\) | \(e\left(\frac{1301}{2430}\right)\) | \(e\left(\frac{2039}{2430}\right)\) | \(e\left(\frac{548}{1215}\right)\) | \(e\left(\frac{292}{405}\right)\) | \(e\left(\frac{347}{405}\right)\) |
| \(\chi_{18225}(16,\cdot)\) | 18225.cm | 1215 | yes | \(1\) | \(1\) | \(e\left(\frac{253}{1215}\right)\) | \(e\left(\frac{506}{1215}\right)\) | \(e\left(\frac{59}{243}\right)\) | \(e\left(\frac{253}{405}\right)\) | \(e\left(\frac{643}{1215}\right)\) | \(e\left(\frac{647}{1215}\right)\) | \(e\left(\frac{548}{1215}\right)\) | \(e\left(\frac{1012}{1215}\right)\) | \(e\left(\frac{353}{405}\right)\) | \(e\left(\frac{88}{405}\right)\) |
| \(\chi_{18225}(17,\cdot)\) | 18225.cn | 1620 | no | \(1\) | \(1\) | \(e\left(\frac{1163}{1620}\right)\) | \(e\left(\frac{353}{810}\right)\) | \(e\left(\frac{1}{324}\right)\) | \(e\left(\frac{83}{540}\right)\) | \(e\left(\frac{499}{810}\right)\) | \(e\left(\frac{1447}{1620}\right)\) | \(e\left(\frac{292}{405}\right)\) | \(e\left(\frac{353}{405}\right)\) | \(e\left(\frac{373}{540}\right)\) | \(e\left(\frac{79}{270}\right)\) |
| \(\chi_{18225}(19,\cdot)\) | 18225.cj | 810 | no | \(1\) | \(1\) | \(e\left(\frac{449}{810}\right)\) | \(e\left(\frac{44}{405}\right)\) | \(e\left(\frac{49}{162}\right)\) | \(e\left(\frac{179}{270}\right)\) | \(e\left(\frac{232}{405}\right)\) | \(e\left(\frac{271}{810}\right)\) | \(e\left(\frac{347}{405}\right)\) | \(e\left(\frac{88}{405}\right)\) | \(e\left(\frac{79}{270}\right)\) | \(e\left(\frac{37}{135}\right)\) |
| \(\chi_{18225}(22,\cdot)\) | 18225.ct | 4860 | yes | \(-1\) | \(1\) | \(e\left(\frac{2111}{4860}\right)\) | \(e\left(\frac{2111}{2430}\right)\) | \(e\left(\frac{475}{972}\right)\) | \(e\left(\frac{491}{1620}\right)\) | \(e\left(\frac{1184}{1215}\right)\) | \(e\left(\frac{769}{4860}\right)\) | \(e\left(\frac{2243}{2430}\right)\) | \(e\left(\frac{896}{1215}\right)\) | \(e\left(\frac{541}{1620}\right)\) | \(e\left(\frac{103}{810}\right)\) |
| \(\chi_{18225}(23,\cdot)\) | 18225.cs | 4860 | yes | \(1\) | \(1\) | \(e\left(\frac{1703}{4860}\right)\) | \(e\left(\frac{1703}{2430}\right)\) | \(e\left(\frac{109}{972}\right)\) | \(e\left(\frac{83}{1620}\right)\) | \(e\left(\frac{769}{2430}\right)\) | \(e\left(\frac{907}{4860}\right)\) | \(e\left(\frac{562}{1215}\right)\) | \(e\left(\frac{488}{1215}\right)\) | \(e\left(\frac{913}{1620}\right)\) | \(e\left(\frac{349}{810}\right)\) |
| \(\chi_{18225}(26,\cdot)\) | 18225.bf | 54 | no | \(-1\) | \(1\) | \(e\left(\frac{37}{54}\right)\) | \(e\left(\frac{10}{27}\right)\) | \(e\left(\frac{26}{27}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{49}{54}\right)\) | \(e\left(\frac{13}{27}\right)\) | \(e\left(\frac{35}{54}\right)\) | \(e\left(\frac{20}{27}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) |
| \(\chi_{18225}(28,\cdot)\) | 18225.cf | 540 | no | \(-1\) | \(1\) | \(e\left(\frac{89}{540}\right)\) | \(e\left(\frac{89}{270}\right)\) | \(e\left(\frac{85}{108}\right)\) | \(e\left(\frac{89}{180}\right)\) | \(e\left(\frac{26}{135}\right)\) | \(e\left(\frac{91}{540}\right)\) | \(e\left(\frac{257}{270}\right)\) | \(e\left(\frac{89}{135}\right)\) | \(e\left(\frac{79}{180}\right)\) | \(e\left(\frac{37}{90}\right)\) |
| \(\chi_{18225}(29,\cdot)\) | 18225.cr | 2430 | yes | \(-1\) | \(1\) | \(e\left(\frac{619}{1215}\right)\) | \(e\left(\frac{23}{1215}\right)\) | \(e\left(\frac{403}{486}\right)\) | \(e\left(\frac{214}{405}\right)\) | \(e\left(\frac{1163}{2430}\right)\) | \(e\left(\frac{2047}{2430}\right)\) | \(e\left(\frac{823}{2430}\right)\) | \(e\left(\frac{46}{1215}\right)\) | \(e\left(\frac{329}{405}\right)\) | \(e\left(\frac{4}{405}\right)\) |
| \(\chi_{18225}(31,\cdot)\) | 18225.cm | 1215 | yes | \(1\) | \(1\) | \(e\left(\frac{131}{1215}\right)\) | \(e\left(\frac{262}{1215}\right)\) | \(e\left(\frac{214}{243}\right)\) | \(e\left(\frac{131}{405}\right)\) | \(e\left(\frac{866}{1215}\right)\) | \(e\left(\frac{724}{1215}\right)\) | \(e\left(\frac{1201}{1215}\right)\) | \(e\left(\frac{524}{1215}\right)\) | \(e\left(\frac{226}{405}\right)\) | \(e\left(\frac{116}{405}\right)\) |
| \(\chi_{18225}(32,\cdot)\) | 18225.cl | 972 | no | \(1\) | \(1\) | \(e\left(\frac{253}{972}\right)\) | \(e\left(\frac{253}{486}\right)\) | \(e\left(\frac{295}{972}\right)\) | \(e\left(\frac{253}{324}\right)\) | \(e\left(\frac{443}{486}\right)\) | \(e\left(\frac{161}{972}\right)\) | \(e\left(\frac{137}{243}\right)\) | \(e\left(\frac{10}{243}\right)\) | \(e\left(\frac{191}{324}\right)\) | \(e\left(\frac{125}{162}\right)\) |
| \(\chi_{18225}(34,\cdot)\) | 18225.cp | 2430 | yes | \(1\) | \(1\) | \(e\left(\frac{1871}{2430}\right)\) | \(e\left(\frac{656}{1215}\right)\) | \(e\left(\frac{31}{486}\right)\) | \(e\left(\frac{251}{810}\right)\) | \(e\left(\frac{1213}{1215}\right)\) | \(e\left(\frac{1279}{2430}\right)\) | \(e\left(\frac{1013}{1215}\right)\) | \(e\left(\frac{97}{1215}\right)\) | \(e\left(\frac{331}{810}\right)\) | \(e\left(\frac{343}{405}\right)\) |
| \(\chi_{18225}(37,\cdot)\) | 18225.co | 1620 | no | \(-1\) | \(1\) | \(e\left(\frac{1589}{1620}\right)\) | \(e\left(\frac{779}{810}\right)\) | \(e\left(\frac{133}{324}\right)\) | \(e\left(\frac{509}{540}\right)\) | \(e\left(\frac{176}{405}\right)\) | \(e\left(\frac{1291}{1620}\right)\) | \(e\left(\frac{317}{810}\right)\) | \(e\left(\frac{374}{405}\right)\) | \(e\left(\frac{199}{540}\right)\) | \(e\left(\frac{247}{270}\right)\) |
| \(\chi_{18225}(38,\cdot)\) | 18225.cs | 4860 | yes | \(1\) | \(1\) | \(e\left(\frac{2947}{4860}\right)\) | \(e\left(\frac{517}{2430}\right)\) | \(e\left(\frac{353}{972}\right)\) | \(e\left(\frac{1327}{1620}\right)\) | \(e\left(\frac{2321}{2430}\right)\) | \(e\left(\frac{4703}{4860}\right)\) | \(e\left(\frac{1178}{1215}\right)\) | \(e\left(\frac{517}{1215}\right)\) | \(e\left(\frac{17}{1620}\right)\) | \(e\left(\frac{671}{810}\right)\) |
| \(\chi_{18225}(41,\cdot)\) | 18225.cq | 2430 | yes | \(-1\) | \(1\) | \(e\left(\frac{1561}{2430}\right)\) | \(e\left(\frac{346}{1215}\right)\) | \(e\left(\frac{73}{243}\right)\) | \(e\left(\frac{751}{810}\right)\) | \(e\left(\frac{961}{2430}\right)\) | \(e\left(\frac{817}{1215}\right)\) | \(e\left(\frac{2291}{2430}\right)\) | \(e\left(\frac{692}{1215}\right)\) | \(e\left(\frac{161}{810}\right)\) | \(e\left(\frac{113}{405}\right)\) |
| \(\chi_{18225}(43,\cdot)\) | 18225.ck | 972 | no | \(-1\) | \(1\) | \(e\left(\frac{665}{972}\right)\) | \(e\left(\frac{179}{486}\right)\) | \(e\left(\frac{785}{972}\right)\) | \(e\left(\frac{17}{324}\right)\) | \(e\left(\frac{89}{243}\right)\) | \(e\left(\frac{379}{972}\right)\) | \(e\left(\frac{239}{486}\right)\) | \(e\left(\frac{179}{243}\right)\) | \(e\left(\frac{187}{324}\right)\) | \(e\left(\frac{91}{162}\right)\) |
| \(\chi_{18225}(44,\cdot)\) | 18225.ci | 810 | no | \(-1\) | \(1\) | \(e\left(\frac{197}{405}\right)\) | \(e\left(\frac{394}{405}\right)\) | \(e\left(\frac{89}{162}\right)\) | \(e\left(\frac{62}{135}\right)\) | \(e\left(\frac{289}{810}\right)\) | \(e\left(\frac{641}{810}\right)\) | \(e\left(\frac{29}{810}\right)\) | \(e\left(\frac{383}{405}\right)\) | \(e\left(\frac{7}{135}\right)\) | \(e\left(\frac{92}{135}\right)\) |
| \(\chi_{18225}(46,\cdot)\) | 18225.cb | 405 | no | \(1\) | \(1\) | \(e\left(\frac{163}{405}\right)\) | \(e\left(\frac{326}{405}\right)\) | \(e\left(\frac{14}{81}\right)\) | \(e\left(\frac{28}{135}\right)\) | \(e\left(\frac{283}{405}\right)\) | \(e\left(\frac{332}{405}\right)\) | \(e\left(\frac{233}{405}\right)\) | \(e\left(\frac{247}{405}\right)\) | \(e\left(\frac{38}{135}\right)\) | \(e\left(\frac{133}{135}\right)\) |
| \(\chi_{18225}(47,\cdot)\) | 18225.cs | 4860 | yes | \(1\) | \(1\) | \(e\left(\frac{3121}{4860}\right)\) | \(e\left(\frac{691}{2430}\right)\) | \(e\left(\frac{359}{972}\right)\) | \(e\left(\frac{1501}{1620}\right)\) | \(e\left(\frac{1913}{2430}\right)\) | \(e\left(\frac{749}{4860}\right)\) | \(e\left(\frac{14}{1215}\right)\) | \(e\left(\frac{691}{1215}\right)\) | \(e\left(\frac{311}{1620}\right)\) | \(e\left(\frac{173}{810}\right)\) |
| \(\chi_{18225}(49,\cdot)\) | 18225.ce | 486 | no | \(1\) | \(1\) | \(e\left(\frac{59}{486}\right)\) | \(e\left(\frac{59}{243}\right)\) | \(e\left(\frac{161}{486}\right)\) | \(e\left(\frac{59}{162}\right)\) | \(e\left(\frac{208}{243}\right)\) | \(e\left(\frac{391}{486}\right)\) | \(e\left(\frac{110}{243}\right)\) | \(e\left(\frac{118}{243}\right)\) | \(e\left(\frac{1}{162}\right)\) | \(e\left(\frac{49}{81}\right)\) |
| \(\chi_{18225}(52,\cdot)\) | 18225.ct | 4860 | yes | \(-1\) | \(1\) | \(e\left(\frac{3583}{4860}\right)\) | \(e\left(\frac{1153}{2430}\right)\) | \(e\left(\frac{23}{972}\right)\) | \(e\left(\frac{343}{1620}\right)\) | \(e\left(\frac{352}{1215}\right)\) | \(e\left(\frac{557}{4860}\right)\) | \(e\left(\frac{1849}{2430}\right)\) | \(e\left(\frac{1153}{1215}\right)\) | \(e\left(\frac{533}{1620}\right)\) | \(e\left(\frac{359}{810}\right)\) |
| \(\chi_{18225}(53,\cdot)\) | 18225.cg | 540 | no | \(1\) | \(1\) | \(e\left(\frac{119}{540}\right)\) | \(e\left(\frac{119}{270}\right)\) | \(e\left(\frac{73}{108}\right)\) | \(e\left(\frac{119}{180}\right)\) | \(e\left(\frac{247}{270}\right)\) | \(e\left(\frac{331}{540}\right)\) | \(e\left(\frac{121}{135}\right)\) | \(e\left(\frac{119}{135}\right)\) | \(e\left(\frac{49}{180}\right)\) | \(e\left(\frac{7}{90}\right)\) |
| \(\chi_{18225}(56,\cdot)\) | 18225.cq | 2430 | yes | \(-1\) | \(1\) | \(e\left(\frac{527}{2430}\right)\) | \(e\left(\frac{527}{1215}\right)\) | \(e\left(\frac{206}{243}\right)\) | \(e\left(\frac{527}{810}\right)\) | \(e\left(\frac{1397}{2430}\right)\) | \(e\left(\frac{974}{1215}\right)\) | \(e\left(\frac{157}{2430}\right)\) | \(e\left(\frac{1054}{1215}\right)\) | \(e\left(\frac{127}{810}\right)\) | \(e\left(\frac{391}{405}\right)\) |
| \(\chi_{18225}(58,\cdot)\) | 18225.ct | 4860 | yes | \(-1\) | \(1\) | \(e\left(\frac{2729}{4860}\right)\) | \(e\left(\frac{299}{2430}\right)\) | \(e\left(\frac{865}{972}\right)\) | \(e\left(\frac{1109}{1620}\right)\) | \(e\left(\frac{1046}{1215}\right)\) | \(e\left(\frac{2311}{4860}\right)\) | \(e\left(\frac{1097}{2430}\right)\) | \(e\left(\frac{299}{1215}\right)\) | \(e\left(\frac{859}{1620}\right)\) | \(e\left(\frac{457}{810}\right)\) |
| \(\chi_{18225}(59,\cdot)\) | 18225.cr | 2430 | yes | \(-1\) | \(1\) | \(e\left(\frac{818}{1215}\right)\) | \(e\left(\frac{421}{1215}\right)\) | \(e\left(\frac{467}{486}\right)\) | \(e\left(\frac{8}{405}\right)\) | \(e\left(\frac{1531}{2430}\right)\) | \(e\left(\frac{1019}{2430}\right)\) | \(e\left(\frac{1541}{2430}\right)\) | \(e\left(\frac{842}{1215}\right)\) | \(e\left(\frac{88}{405}\right)\) | \(e\left(\frac{38}{405}\right)\) |