Properties

Label 1720.93
Modulus $1720$
Conductor $1720$
Order $12$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1720, base_ring=CyclotomicField(12)) M = H._module chi = DirichletCharacter(H, M([0,6,9,10]))
 
Copy content pari:[g,chi] = znchar(Mod(93,1720))
 

Basic properties

Modulus: \(1720\)
Conductor: \(1720\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(12\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1720.br

\(\chi_{1720}(37,\cdot)\) \(\chi_{1720}(93,\cdot)\) \(\chi_{1720}(437,\cdot)\) \(\chi_{1720}(1413,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: Number field defined by a degree 12 polynomial

Values on generators

\((431,861,1377,1121)\) → \((1,-1,-i,e\left(\frac{5}{6}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)
\( \chi_{ 1720 }(93, a) \) \(1\)\(1\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{1}{6}\right)\)\(-1\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{5}{6}\right)\)\(-1\)\(e\left(\frac{7}{12}\right)\)\(-i\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1720 }(93,a) \;\) at \(\;a = \) e.g. 2