sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1720, base_ring=CyclotomicField(84))
M = H._module
chi = DirichletCharacter(H, M([0,42,21,58]))
pari:[g,chi] = znchar(Mod(1437,1720))
Modulus: | \(1720\) | |
Conductor: | \(1720\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(84\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1720}(77,\cdot)\)
\(\chi_{1720}(157,\cdot)\)
\(\chi_{1720}(277,\cdot)\)
\(\chi_{1720}(373,\cdot)\)
\(\chi_{1720}(413,\cdot)\)
\(\chi_{1720}(493,\cdot)\)
\(\chi_{1720}(693,\cdot)\)
\(\chi_{1720}(717,\cdot)\)
\(\chi_{1720}(757,\cdot)\)
\(\chi_{1720}(837,\cdot)\)
\(\chi_{1720}(893,\cdot)\)
\(\chi_{1720}(933,\cdot)\)
\(\chi_{1720}(1037,\cdot)\)
\(\chi_{1720}(1093,\cdot)\)
\(\chi_{1720}(1173,\cdot)\)
\(\chi_{1720}(1237,\cdot)\)
\(\chi_{1720}(1277,\cdot)\)
\(\chi_{1720}(1293,\cdot)\)
\(\chi_{1720}(1437,\cdot)\)
\(\chi_{1720}(1453,\cdot)\)
\(\chi_{1720}(1517,\cdot)\)
\(\chi_{1720}(1533,\cdot)\)
\(\chi_{1720}(1637,\cdot)\)
\(\chi_{1720}(1653,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((431,861,1377,1121)\) → \((1,-1,i,e\left(\frac{29}{42}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) |
\( \chi_{ 1720 }(1437, a) \) |
\(1\) | \(1\) | \(e\left(\frac{79}{84}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{37}{42}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{29}{84}\right)\) | \(e\left(\frac{41}{84}\right)\) | \(e\left(\frac{5}{42}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{67}{84}\right)\) | \(e\left(\frac{23}{28}\right)\) |
sage:chi.jacobi_sum(n)