sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1700, base_ring=CyclotomicField(40))
M = H._module
chi = DirichletCharacter(H, M([20,18,5]))
pari:[g,chi] = znchar(Mod(587,1700))
Modulus: | \(1700\) | |
Conductor: | \(1700\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(40\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1700}(83,\cdot)\)
\(\chi_{1700}(127,\cdot)\)
\(\chi_{1700}(223,\cdot)\)
\(\chi_{1700}(247,\cdot)\)
\(\chi_{1700}(423,\cdot)\)
\(\chi_{1700}(467,\cdot)\)
\(\chi_{1700}(563,\cdot)\)
\(\chi_{1700}(587,\cdot)\)
\(\chi_{1700}(763,\cdot)\)
\(\chi_{1700}(903,\cdot)\)
\(\chi_{1700}(927,\cdot)\)
\(\chi_{1700}(1103,\cdot)\)
\(\chi_{1700}(1147,\cdot)\)
\(\chi_{1700}(1267,\cdot)\)
\(\chi_{1700}(1487,\cdot)\)
\(\chi_{1700}(1583,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((851,477,1601)\) → \((-1,e\left(\frac{9}{20}\right),e\left(\frac{1}{8}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(19\) | \(21\) | \(23\) | \(27\) | \(29\) |
\( \chi_{ 1700 }(587, a) \) |
\(1\) | \(1\) | \(e\left(\frac{31}{40}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{23}{40}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{13}{40}\right)\) | \(e\left(\frac{13}{40}\right)\) | \(e\left(\frac{21}{40}\right)\) |
sage:chi.jacobi_sum(n)