sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1700, base_ring=CyclotomicField(80))
M = H._module
chi = DirichletCharacter(H, M([40,36,65]))
pari:[g,chi] = znchar(Mod(1287,1700))
| Modulus: | \(1700\) | |
| Conductor: | \(1700\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(80\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1700}(23,\cdot)\)
\(\chi_{1700}(163,\cdot)\)
\(\chi_{1700}(167,\cdot)\)
\(\chi_{1700}(267,\cdot)\)
\(\chi_{1700}(283,\cdot)\)
\(\chi_{1700}(363,\cdot)\)
\(\chi_{1700}(447,\cdot)\)
\(\chi_{1700}(483,\cdot)\)
\(\chi_{1700}(503,\cdot)\)
\(\chi_{1700}(547,\cdot)\)
\(\chi_{1700}(623,\cdot)\)
\(\chi_{1700}(703,\cdot)\)
\(\chi_{1700}(787,\cdot)\)
\(\chi_{1700}(823,\cdot)\)
\(\chi_{1700}(847,\cdot)\)
\(\chi_{1700}(887,\cdot)\)
\(\chi_{1700}(947,\cdot)\)
\(\chi_{1700}(963,\cdot)\)
\(\chi_{1700}(1127,\cdot)\)
\(\chi_{1700}(1163,\cdot)\)
\(\chi_{1700}(1183,\cdot)\)
\(\chi_{1700}(1187,\cdot)\)
\(\chi_{1700}(1227,\cdot)\)
\(\chi_{1700}(1287,\cdot)\)
\(\chi_{1700}(1303,\cdot)\)
\(\chi_{1700}(1383,\cdot)\)
\(\chi_{1700}(1467,\cdot)\)
\(\chi_{1700}(1503,\cdot)\)
\(\chi_{1700}(1523,\cdot)\)
\(\chi_{1700}(1527,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((851,477,1601)\) → \((-1,e\left(\frac{9}{20}\right),e\left(\frac{13}{16}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(19\) | \(21\) | \(23\) | \(27\) | \(29\) |
| \( \chi_{ 1700 }(1287, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{37}{80}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{37}{40}\right)\) | \(e\left(\frac{31}{80}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{39}{40}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{51}{80}\right)\) | \(e\left(\frac{31}{80}\right)\) | \(e\left(\frac{37}{80}\right)\) |
sage:chi.jacobi_sum(n)