sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1667, base_ring=CyclotomicField(98))
M = H._module
chi = DirichletCharacter(H, M([40]))
pari:[g,chi] = znchar(Mod(1168,1667))
| Modulus: | \(1667\) | |
| Conductor: | \(1667\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(49\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1667}(13,\cdot)\)
\(\chi_{1667}(149,\cdot)\)
\(\chi_{1667}(160,\cdot)\)
\(\chi_{1667}(169,\cdot)\)
\(\chi_{1667}(174,\cdot)\)
\(\chi_{1667}(181,\cdot)\)
\(\chi_{1667}(183,\cdot)\)
\(\chi_{1667}(222,\cdot)\)
\(\chi_{1667}(270,\cdot)\)
\(\chi_{1667}(297,\cdot)\)
\(\chi_{1667}(304,\cdot)\)
\(\chi_{1667}(368,\cdot)\)
\(\chi_{1667}(397,\cdot)\)
\(\chi_{1667}(413,\cdot)\)
\(\chi_{1667}(513,\cdot)\)
\(\chi_{1667}(527,\cdot)\)
\(\chi_{1667}(530,\cdot)\)
\(\chi_{1667}(535,\cdot)\)
\(\chi_{1667}(564,\cdot)\)
\(\chi_{1667}(583,\cdot)\)
\(\chi_{1667}(595,\cdot)\)
\(\chi_{1667}(618,\cdot)\)
\(\chi_{1667}(621,\cdot)\)
\(\chi_{1667}(664,\cdot)\)
\(\chi_{1667}(731,\cdot)\)
\(\chi_{1667}(808,\cdot)\)
\(\chi_{1667}(844,\cdot)\)
\(\chi_{1667}(911,\cdot)\)
\(\chi_{1667}(921,\cdot)\)
\(\chi_{1667}(941,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(2\) → \(e\left(\frac{20}{49}\right)\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
| \( \chi_{ 1667 }(1168, a) \) |
\(1\) | \(1\) | \(e\left(\frac{20}{49}\right)\) | \(e\left(\frac{25}{49}\right)\) | \(e\left(\frac{40}{49}\right)\) | \(e\left(\frac{34}{49}\right)\) | \(e\left(\frac{45}{49}\right)\) | \(e\left(\frac{40}{49}\right)\) | \(e\left(\frac{11}{49}\right)\) | \(e\left(\frac{1}{49}\right)\) | \(e\left(\frac{5}{49}\right)\) | \(e\left(\frac{32}{49}\right)\) |
sage:chi.jacobi_sum(n)