Properties

Label 1632.1619
Modulus $1632$
Conductor $1632$
Order $8$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1632, base_ring=CyclotomicField(8)) M = H._module chi = DirichletCharacter(H, M([4,7,4,6]))
 
Copy content pari:[g,chi] = znchar(Mod(1619,1632))
 

Basic properties

Modulus: \(1632\)
Conductor: \(1632\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(8\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1632.bt

\(\chi_{1632}(251,\cdot)\) \(\chi_{1632}(803,\cdot)\) \(\chi_{1632}(1067,\cdot)\) \(\chi_{1632}(1619,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{8})\)
Fixed field: 8.8.4198637813127708672.2

Values on generators

\((511,613,545,1057)\) → \((-1,e\left(\frac{7}{8}\right),-1,-i)\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 1632 }(1619, a) \) \(1\)\(1\)\(e\left(\frac{1}{8}\right)\)\(-1\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{1}{8}\right)\)\(-1\)\(i\)\(e\left(\frac{7}{8}\right)\)\(i\)\(e\left(\frac{5}{8}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1632 }(1619,a) \;\) at \(\;a = \) e.g. 2