Properties

Label 1588.1123
Modulus $1588$
Conductor $1588$
Order $132$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1588, base_ring=CyclotomicField(132)) M = H._module chi = DirichletCharacter(H, M([66,103]))
 
Copy content pari:[g,chi] = znchar(Mod(1123,1588))
 

Basic properties

Modulus: \(1588\)
Conductor: \(1588\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(132\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1588.be

\(\chi_{1588}(15,\cdot)\) \(\chi_{1588}(55,\cdot)\) \(\chi_{1588}(71,\cdot)\) \(\chi_{1588}(95,\cdot)\) \(\chi_{1588}(103,\cdot)\) \(\chi_{1588}(123,\cdot)\) \(\chi_{1588}(231,\cdot)\) \(\chi_{1588}(267,\cdot)\) \(\chi_{1588}(311,\cdot)\) \(\chi_{1588}(327,\cdot)\) \(\chi_{1588}(343,\cdot)\) \(\chi_{1588}(451,\cdot)\) \(\chi_{1588}(467,\cdot)\) \(\chi_{1588}(483,\cdot)\) \(\chi_{1588}(527,\cdot)\) \(\chi_{1588}(563,\cdot)\) \(\chi_{1588}(671,\cdot)\) \(\chi_{1588}(691,\cdot)\) \(\chi_{1588}(699,\cdot)\) \(\chi_{1588}(723,\cdot)\) \(\chi_{1588}(739,\cdot)\) \(\chi_{1588}(779,\cdot)\) \(\chi_{1588}(811,\cdot)\) \(\chi_{1588}(847,\cdot)\) \(\chi_{1588}(907,\cdot)\) \(\chi_{1588}(911,\cdot)\) \(\chi_{1588}(919,\cdot)\) \(\chi_{1588}(975,\cdot)\) \(\chi_{1588}(979,\cdot)\) \(\chi_{1588}(1123,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{132})$
Fixed field: Number field defined by a degree 132 polynomial (not computed)

Values on generators

\((795,5)\) → \((-1,e\left(\frac{103}{132}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 1588 }(1123, a) \) \(1\)\(1\)\(e\left(\frac{17}{33}\right)\)\(e\left(\frac{103}{132}\right)\)\(e\left(\frac{29}{132}\right)\)\(e\left(\frac{1}{33}\right)\)\(e\left(\frac{49}{66}\right)\)\(e\left(\frac{107}{132}\right)\)\(e\left(\frac{13}{44}\right)\)\(e\left(\frac{17}{44}\right)\)\(e\left(\frac{25}{66}\right)\)\(e\left(\frac{97}{132}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1588 }(1123,a) \;\) at \(\;a = \) e.g. 2