sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1588, base_ring=CyclotomicField(44))
M = H._module
chi = DirichletCharacter(H, M([22,35]))
pari:[g,chi] = znchar(Mod(1063,1588))
| Modulus: | \(1588\) | |
| Conductor: | \(1588\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(44\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1588}(115,\cdot)\)
\(\chi_{1588}(183,\cdot)\)
\(\chi_{1588}(199,\cdot)\)
\(\chi_{1588}(335,\cdot)\)
\(\chi_{1588}(395,\cdot)\)
\(\chi_{1588}(399,\cdot)\)
\(\chi_{1588}(459,\cdot)\)
\(\chi_{1588}(595,\cdot)\)
\(\chi_{1588}(611,\cdot)\)
\(\chi_{1588}(679,\cdot)\)
\(\chi_{1588}(939,\cdot)\)
\(\chi_{1588}(943,\cdot)\)
\(\chi_{1588}(1063,\cdot)\)
\(\chi_{1588}(1159,\cdot)\)
\(\chi_{1588}(1183,\cdot)\)
\(\chi_{1588}(1199,\cdot)\)
\(\chi_{1588}(1223,\cdot)\)
\(\chi_{1588}(1319,\cdot)\)
\(\chi_{1588}(1439,\cdot)\)
\(\chi_{1588}(1443,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((795,5)\) → \((-1,e\left(\frac{35}{44}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
| \( \chi_{ 1588 }(1063, a) \) |
\(1\) | \(1\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{35}{44}\right)\) | \(e\left(\frac{9}{44}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{15}{44}\right)\) | \(e\left(\frac{3}{44}\right)\) | \(e\left(\frac{31}{44}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{21}{44}\right)\) |
sage:chi.jacobi_sum(n)