sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(15800, base_ring=CyclotomicField(130))
M = H._module
chi = DirichletCharacter(H, M([65,65,13,55]))
pari:[g,chi] = znchar(Mod(9379,15800))
Modulus: | \(15800\) | |
Conductor: | \(15800\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(130\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{15800}(219,\cdot)\)
\(\chi_{15800}(659,\cdot)\)
\(\chi_{15800}(859,\cdot)\)
\(\chi_{15800}(1019,\cdot)\)
\(\chi_{15800}(1139,\cdot)\)
\(\chi_{15800}(1779,\cdot)\)
\(\chi_{15800}(2619,\cdot)\)
\(\chi_{15800}(2779,\cdot)\)
\(\chi_{15800}(2859,\cdot)\)
\(\chi_{15800}(3019,\cdot)\)
\(\chi_{15800}(3059,\cdot)\)
\(\chi_{15800}(3139,\cdot)\)
\(\chi_{15800}(3379,\cdot)\)
\(\chi_{15800}(3819,\cdot)\)
\(\chi_{15800}(4019,\cdot)\)
\(\chi_{15800}(4179,\cdot)\)
\(\chi_{15800}(4939,\cdot)\)
\(\chi_{15800}(5779,\cdot)\)
\(\chi_{15800}(5939,\cdot)\)
\(\chi_{15800}(6019,\cdot)\)
\(\chi_{15800}(6179,\cdot)\)
\(\chi_{15800}(6219,\cdot)\)
\(\chi_{15800}(6539,\cdot)\)
\(\chi_{15800}(6979,\cdot)\)
\(\chi_{15800}(7179,\cdot)\)
\(\chi_{15800}(7339,\cdot)\)
\(\chi_{15800}(7459,\cdot)\)
\(\chi_{15800}(8939,\cdot)\)
\(\chi_{15800}(9179,\cdot)\)
\(\chi_{15800}(9339,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((3951,7901,11377,12801)\) → \((-1,-1,e\left(\frac{1}{10}\right),e\left(\frac{11}{26}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) |
\( \chi_{ 15800 }(9379, a) \) |
\(1\) | \(1\) | \(e\left(\frac{8}{65}\right)\) | \(e\left(\frac{11}{26}\right)\) | \(e\left(\frac{16}{65}\right)\) | \(e\left(\frac{24}{65}\right)\) | \(e\left(\frac{51}{65}\right)\) | \(e\left(\frac{12}{65}\right)\) | \(e\left(\frac{22}{65}\right)\) | \(e\left(\frac{71}{130}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{24}{65}\right)\) |
sage:chi.jacobi_sum(n)