Properties

Label 15800.9379
Modulus $15800$
Conductor $15800$
Order $130$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(15800, base_ring=CyclotomicField(130)) M = H._module chi = DirichletCharacter(H, M([65,65,13,55]))
 
Copy content pari:[g,chi] = znchar(Mod(9379,15800))
 

Basic properties

Modulus: \(15800\)
Conductor: \(15800\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(130\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 15800.fv

\(\chi_{15800}(219,\cdot)\) \(\chi_{15800}(659,\cdot)\) \(\chi_{15800}(859,\cdot)\) \(\chi_{15800}(1019,\cdot)\) \(\chi_{15800}(1139,\cdot)\) \(\chi_{15800}(1779,\cdot)\) \(\chi_{15800}(2619,\cdot)\) \(\chi_{15800}(2779,\cdot)\) \(\chi_{15800}(2859,\cdot)\) \(\chi_{15800}(3019,\cdot)\) \(\chi_{15800}(3059,\cdot)\) \(\chi_{15800}(3139,\cdot)\) \(\chi_{15800}(3379,\cdot)\) \(\chi_{15800}(3819,\cdot)\) \(\chi_{15800}(4019,\cdot)\) \(\chi_{15800}(4179,\cdot)\) \(\chi_{15800}(4939,\cdot)\) \(\chi_{15800}(5779,\cdot)\) \(\chi_{15800}(5939,\cdot)\) \(\chi_{15800}(6019,\cdot)\) \(\chi_{15800}(6179,\cdot)\) \(\chi_{15800}(6219,\cdot)\) \(\chi_{15800}(6539,\cdot)\) \(\chi_{15800}(6979,\cdot)\) \(\chi_{15800}(7179,\cdot)\) \(\chi_{15800}(7339,\cdot)\) \(\chi_{15800}(7459,\cdot)\) \(\chi_{15800}(8939,\cdot)\) \(\chi_{15800}(9179,\cdot)\) \(\chi_{15800}(9339,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{65})$
Fixed field: Number field defined by a degree 130 polynomial (not computed)

Values on generators

\((3951,7901,11377,12801)\) → \((-1,-1,e\left(\frac{1}{10}\right),e\left(\frac{11}{26}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)
\( \chi_{ 15800 }(9379, a) \) \(1\)\(1\)\(e\left(\frac{8}{65}\right)\)\(e\left(\frac{11}{26}\right)\)\(e\left(\frac{16}{65}\right)\)\(e\left(\frac{24}{65}\right)\)\(e\left(\frac{51}{65}\right)\)\(e\left(\frac{12}{65}\right)\)\(e\left(\frac{22}{65}\right)\)\(e\left(\frac{71}{130}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{24}{65}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 15800 }(9379,a) \;\) at \(\;a = \) e.g. 2