sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1575, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([10,27,40]))
pari:[g,chi] = znchar(Mod(137,1575))
Modulus: | \(1575\) | |
Conductor: | \(1575\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(60\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1575}(23,\cdot)\)
\(\chi_{1575}(137,\cdot)\)
\(\chi_{1575}(212,\cdot)\)
\(\chi_{1575}(263,\cdot)\)
\(\chi_{1575}(338,\cdot)\)
\(\chi_{1575}(452,\cdot)\)
\(\chi_{1575}(527,\cdot)\)
\(\chi_{1575}(578,\cdot)\)
\(\chi_{1575}(653,\cdot)\)
\(\chi_{1575}(767,\cdot)\)
\(\chi_{1575}(842,\cdot)\)
\(\chi_{1575}(1208,\cdot)\)
\(\chi_{1575}(1283,\cdot)\)
\(\chi_{1575}(1397,\cdot)\)
\(\chi_{1575}(1472,\cdot)\)
\(\chi_{1575}(1523,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1226,127,451)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{9}{20}\right),e\left(\frac{2}{3}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) | \(22\) | \(23\) |
\( \chi_{ 1575 }(137, a) \) |
\(1\) | \(1\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{53}{60}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{1}{60}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{59}{60}\right)\) | \(e\left(\frac{7}{60}\right)\) |
sage:chi.jacobi_sum(n)