sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1573, base_ring=CyclotomicField(132))
M = H._module
chi = DirichletCharacter(H, M([78,55]))
pari:[g,chi] = znchar(Mod(1033,1573))
Modulus: | \(1573\) | |
Conductor: | \(1573\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(132\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1573}(32,\cdot)\)
\(\chi_{1573}(54,\cdot)\)
\(\chi_{1573}(76,\cdot)\)
\(\chi_{1573}(98,\cdot)\)
\(\chi_{1573}(175,\cdot)\)
\(\chi_{1573}(197,\cdot)\)
\(\chi_{1573}(219,\cdot)\)
\(\chi_{1573}(318,\cdot)\)
\(\chi_{1573}(340,\cdot)\)
\(\chi_{1573}(384,\cdot)\)
\(\chi_{1573}(461,\cdot)\)
\(\chi_{1573}(505,\cdot)\)
\(\chi_{1573}(527,\cdot)\)
\(\chi_{1573}(626,\cdot)\)
\(\chi_{1573}(648,\cdot)\)
\(\chi_{1573}(670,\cdot)\)
\(\chi_{1573}(747,\cdot)\)
\(\chi_{1573}(769,\cdot)\)
\(\chi_{1573}(791,\cdot)\)
\(\chi_{1573}(813,\cdot)\)
\(\chi_{1573}(890,\cdot)\)
\(\chi_{1573}(912,\cdot)\)
\(\chi_{1573}(934,\cdot)\)
\(\chi_{1573}(956,\cdot)\)
\(\chi_{1573}(1033,\cdot)\)
\(\chi_{1573}(1055,\cdot)\)
\(\chi_{1573}(1077,\cdot)\)
\(\chi_{1573}(1099,\cdot)\)
\(\chi_{1573}(1176,\cdot)\)
\(\chi_{1573}(1198,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((365,1211)\) → \((e\left(\frac{13}{22}\right),e\left(\frac{5}{12}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(12\) |
\( \chi_{ 1573 }(1033, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{132}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{66}\right)\) | \(e\left(\frac{21}{44}\right)\) | \(e\left(\frac{89}{132}\right)\) | \(e\left(\frac{95}{132}\right)\) | \(e\left(\frac{1}{44}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{16}{33}\right)\) | \(e\left(\frac{15}{22}\right)\) |
sage:chi.jacobi_sum(n)