sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1573, base_ring=CyclotomicField(660))
M = H._module
chi = DirichletCharacter(H, M([366,385]))
pari:[g,chi] = znchar(Mod(1025,1573))
Modulus: | \(1573\) | |
Conductor: | \(1573\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(660\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1573}(2,\cdot)\)
\(\chi_{1573}(6,\cdot)\)
\(\chi_{1573}(7,\cdot)\)
\(\chi_{1573}(19,\cdot)\)
\(\chi_{1573}(24,\cdot)\)
\(\chi_{1573}(28,\cdot)\)
\(\chi_{1573}(41,\cdot)\)
\(\chi_{1573}(46,\cdot)\)
\(\chi_{1573}(50,\cdot)\)
\(\chi_{1573}(63,\cdot)\)
\(\chi_{1573}(72,\cdot)\)
\(\chi_{1573}(84,\cdot)\)
\(\chi_{1573}(85,\cdot)\)
\(\chi_{1573}(106,\cdot)\)
\(\chi_{1573}(123,\cdot)\)
\(\chi_{1573}(128,\cdot)\)
\(\chi_{1573}(145,\cdot)\)
\(\chi_{1573}(149,\cdot)\)
\(\chi_{1573}(150,\cdot)\)
\(\chi_{1573}(162,\cdot)\)
\(\chi_{1573}(167,\cdot)\)
\(\chi_{1573}(171,\cdot)\)
\(\chi_{1573}(184,\cdot)\)
\(\chi_{1573}(189,\cdot)\)
\(\chi_{1573}(193,\cdot)\)
\(\chi_{1573}(206,\cdot)\)
\(\chi_{1573}(227,\cdot)\)
\(\chi_{1573}(228,\cdot)\)
\(\chi_{1573}(249,\cdot)\)
\(\chi_{1573}(266,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((365,1211)\) → \((e\left(\frac{61}{110}\right),e\left(\frac{7}{12}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(12\) |
\( \chi_{ 1573 }(1025, a) \) |
\(1\) | \(1\) | \(e\left(\frac{91}{660}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{91}{330}\right)\) | \(e\left(\frac{63}{220}\right)\) | \(e\left(\frac{179}{660}\right)\) | \(e\left(\frac{197}{660}\right)\) | \(e\left(\frac{91}{220}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{14}{33}\right)\) | \(e\left(\frac{9}{22}\right)\) |
sage:chi.jacobi_sum(n)