sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1573, base_ring=CyclotomicField(330))
M = H._module
chi = DirichletCharacter(H, M([126,55]))
pari:[g,chi] = znchar(Mod(1005,1573))
Modulus: | \(1573\) | |
Conductor: | \(1573\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(330\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1573}(4,\cdot)\)
\(\chi_{1573}(36,\cdot)\)
\(\chi_{1573}(49,\cdot)\)
\(\chi_{1573}(69,\cdot)\)
\(\chi_{1573}(75,\cdot)\)
\(\chi_{1573}(82,\cdot)\)
\(\chi_{1573}(108,\cdot)\)
\(\chi_{1573}(114,\cdot)\)
\(\chi_{1573}(147,\cdot)\)
\(\chi_{1573}(179,\cdot)\)
\(\chi_{1573}(192,\cdot)\)
\(\chi_{1573}(212,\cdot)\)
\(\chi_{1573}(218,\cdot)\)
\(\chi_{1573}(225,\cdot)\)
\(\chi_{1573}(257,\cdot)\)
\(\chi_{1573}(290,\cdot)\)
\(\chi_{1573}(322,\cdot)\)
\(\chi_{1573}(335,\cdot)\)
\(\chi_{1573}(355,\cdot)\)
\(\chi_{1573}(361,\cdot)\)
\(\chi_{1573}(368,\cdot)\)
\(\chi_{1573}(394,\cdot)\)
\(\chi_{1573}(400,\cdot)\)
\(\chi_{1573}(433,\cdot)\)
\(\chi_{1573}(465,\cdot)\)
\(\chi_{1573}(478,\cdot)\)
\(\chi_{1573}(498,\cdot)\)
\(\chi_{1573}(504,\cdot)\)
\(\chi_{1573}(537,\cdot)\)
\(\chi_{1573}(543,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((365,1211)\) → \((e\left(\frac{21}{55}\right),e\left(\frac{1}{6}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(12\) |
\( \chi_{ 1573 }(1005, a) \) |
\(1\) | \(1\) | \(e\left(\frac{181}{330}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{16}{165}\right)\) | \(e\left(\frac{83}{110}\right)\) | \(e\left(\frac{269}{330}\right)\) | \(e\left(\frac{167}{330}\right)\) | \(e\left(\frac{71}{110}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{10}{33}\right)\) | \(e\left(\frac{4}{11}\right)\) |
sage:chi.jacobi_sum(n)