Properties

Conductor 1571
Order 785
Real No
Primitive Yes
Parity Even
Orbit Label 1571.g

Related objects

Learn more about

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
 
sage: H = DirichletGroup_conrey(1571)
 
sage: chi = H[143]
 
pari: [g,chi] = znchar(Mod(143,1571))
 

Basic properties

sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Conductor = 1571
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Order = 785
Real = No
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
 
Primitive = Yes
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 
Parity = Even
Orbit label = 1571.g
Orbit index = 7

Galois orbit

sage: chi.sage_character().galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

\(\chi_{1571}(3,\cdot)\) \(\chi_{1571}(4,\cdot)\) \(\chi_{1571}(5,\cdot)\) \(\chi_{1571}(7,\cdot)\) \(\chi_{1571}(9,\cdot)\) \(\chi_{1571}(12,\cdot)\) \(\chi_{1571}(16,\cdot)\) \(\chi_{1571}(19,\cdot)\) \(\chi_{1571}(20,\cdot)\) \(\chi_{1571}(21,\cdot)\) \(\chi_{1571}(22,\cdot)\) \(\chi_{1571}(25,\cdot)\) \(\chi_{1571}(26,\cdot)\) \(\chi_{1571}(27,\cdot)\) \(\chi_{1571}(28,\cdot)\) \(\chi_{1571}(29,\cdot)\) \(\chi_{1571}(31,\cdot)\) \(\chi_{1571}(34,\cdot)\) \(\chi_{1571}(35,\cdot)\) \(\chi_{1571}(45,\cdot)\) \(\chi_{1571}(47,\cdot)\) \(\chi_{1571}(48,\cdot)\) \(\chi_{1571}(49,\cdot)\) \(\chi_{1571}(57,\cdot)\) \(\chi_{1571}(59,\cdot)\) \(\chi_{1571}(60,\cdot)\) \(\chi_{1571}(61,\cdot)\) \(\chi_{1571}(64,\cdot)\) \(\chi_{1571}(66,\cdot)\) \(\chi_{1571}(67,\cdot)\) ...

Values on generators

\(2\) → \(e\left(\frac{74}{785}\right)\)

Values

-11234567891011
\(1\)\(1\)\(e\left(\frac{74}{785}\right)\)\(e\left(\frac{506}{785}\right)\)\(e\left(\frac{148}{785}\right)\)\(e\left(\frac{319}{785}\right)\)\(e\left(\frac{116}{157}\right)\)\(e\left(\frac{68}{785}\right)\)\(e\left(\frac{222}{785}\right)\)\(e\left(\frac{227}{785}\right)\)\(e\left(\frac{393}{785}\right)\)\(e\left(\frac{112}{785}\right)\)
value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{785})\)