sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1521, base_ring=CyclotomicField(156))
M = H._module
chi = DirichletCharacter(H, M([104,57]))
pari:[g,chi] = znchar(Mod(1123,1521))
| Modulus: | \(1521\) | |
| Conductor: | \(1521\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(156\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1521}(31,\cdot)\)
\(\chi_{1521}(34,\cdot)\)
\(\chi_{1521}(112,\cdot)\)
\(\chi_{1521}(148,\cdot)\)
\(\chi_{1521}(151,\cdot)\)
\(\chi_{1521}(187,\cdot)\)
\(\chi_{1521}(229,\cdot)\)
\(\chi_{1521}(265,\cdot)\)
\(\chi_{1521}(304,\cdot)\)
\(\chi_{1521}(346,\cdot)\)
\(\chi_{1521}(382,\cdot)\)
\(\chi_{1521}(385,\cdot)\)
\(\chi_{1521}(421,\cdot)\)
\(\chi_{1521}(463,\cdot)\)
\(\chi_{1521}(499,\cdot)\)
\(\chi_{1521}(502,\cdot)\)
\(\chi_{1521}(538,\cdot)\)
\(\chi_{1521}(580,\cdot)\)
\(\chi_{1521}(616,\cdot)\)
\(\chi_{1521}(619,\cdot)\)
\(\chi_{1521}(655,\cdot)\)
\(\chi_{1521}(697,\cdot)\)
\(\chi_{1521}(733,\cdot)\)
\(\chi_{1521}(736,\cdot)\)
\(\chi_{1521}(772,\cdot)\)
\(\chi_{1521}(814,\cdot)\)
\(\chi_{1521}(850,\cdot)\)
\(\chi_{1521}(853,\cdot)\)
\(\chi_{1521}(889,\cdot)\)
\(\chi_{1521}(931,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((677,847)\) → \((e\left(\frac{2}{3}\right),e\left(\frac{19}{52}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(14\) | \(16\) | \(17\) |
| \( \chi_{ 1521 }(1123, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{5}{156}\right)\) | \(e\left(\frac{5}{78}\right)\) | \(e\left(\frac{97}{156}\right)\) | \(e\left(\frac{119}{156}\right)\) | \(e\left(\frac{5}{52}\right)\) | \(e\left(\frac{17}{26}\right)\) | \(e\left(\frac{47}{156}\right)\) | \(e\left(\frac{31}{39}\right)\) | \(e\left(\frac{5}{39}\right)\) | \(e\left(\frac{9}{26}\right)\) |
sage:chi.jacobi_sum(n)