sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1521, base_ring=CyclotomicField(156))
M = H._module
chi = DirichletCharacter(H, M([104,51]))
pari:[g,chi] = znchar(Mod(1087,1521))
Modulus: | \(1521\) | |
Conductor: | \(1521\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(156\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1521}(31,\cdot)\)
\(\chi_{1521}(34,\cdot)\)
\(\chi_{1521}(112,\cdot)\)
\(\chi_{1521}(148,\cdot)\)
\(\chi_{1521}(151,\cdot)\)
\(\chi_{1521}(187,\cdot)\)
\(\chi_{1521}(229,\cdot)\)
\(\chi_{1521}(265,\cdot)\)
\(\chi_{1521}(304,\cdot)\)
\(\chi_{1521}(346,\cdot)\)
\(\chi_{1521}(382,\cdot)\)
\(\chi_{1521}(385,\cdot)\)
\(\chi_{1521}(421,\cdot)\)
\(\chi_{1521}(463,\cdot)\)
\(\chi_{1521}(499,\cdot)\)
\(\chi_{1521}(502,\cdot)\)
\(\chi_{1521}(538,\cdot)\)
\(\chi_{1521}(580,\cdot)\)
\(\chi_{1521}(616,\cdot)\)
\(\chi_{1521}(619,\cdot)\)
\(\chi_{1521}(655,\cdot)\)
\(\chi_{1521}(697,\cdot)\)
\(\chi_{1521}(733,\cdot)\)
\(\chi_{1521}(736,\cdot)\)
\(\chi_{1521}(772,\cdot)\)
\(\chi_{1521}(814,\cdot)\)
\(\chi_{1521}(850,\cdot)\)
\(\chi_{1521}(853,\cdot)\)
\(\chi_{1521}(889,\cdot)\)
\(\chi_{1521}(931,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((677,847)\) → \((e\left(\frac{2}{3}\right),e\left(\frac{17}{52}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(14\) | \(16\) | \(17\) |
\( \chi_{ 1521 }(1087, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{155}{156}\right)\) | \(e\left(\frac{77}{78}\right)\) | \(e\left(\frac{43}{156}\right)\) | \(e\left(\frac{101}{156}\right)\) | \(e\left(\frac{51}{52}\right)\) | \(e\left(\frac{7}{26}\right)\) | \(e\left(\frac{53}{156}\right)\) | \(e\left(\frac{25}{39}\right)\) | \(e\left(\frac{38}{39}\right)\) | \(e\left(\frac{19}{26}\right)\) |
sage:chi.jacobi_sum(n)