sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1521, base_ring=CyclotomicField(156))
M = H._module
chi = DirichletCharacter(H, M([52,107]))
pari:[g,chi] = znchar(Mod(1021,1521))
Modulus: | \(1521\) | |
Conductor: | \(1521\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(156\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1521}(58,\cdot)\)
\(\chi_{1521}(85,\cdot)\)
\(\chi_{1521}(106,\cdot)\)
\(\chi_{1521}(115,\cdot)\)
\(\chi_{1521}(175,\cdot)\)
\(\chi_{1521}(202,\cdot)\)
\(\chi_{1521}(223,\cdot)\)
\(\chi_{1521}(232,\cdot)\)
\(\chi_{1521}(292,\cdot)\)
\(\chi_{1521}(340,\cdot)\)
\(\chi_{1521}(349,\cdot)\)
\(\chi_{1521}(409,\cdot)\)
\(\chi_{1521}(436,\cdot)\)
\(\chi_{1521}(457,\cdot)\)
\(\chi_{1521}(466,\cdot)\)
\(\chi_{1521}(553,\cdot)\)
\(\chi_{1521}(574,\cdot)\)
\(\chi_{1521}(583,\cdot)\)
\(\chi_{1521}(643,\cdot)\)
\(\chi_{1521}(670,\cdot)\)
\(\chi_{1521}(691,\cdot)\)
\(\chi_{1521}(700,\cdot)\)
\(\chi_{1521}(760,\cdot)\)
\(\chi_{1521}(787,\cdot)\)
\(\chi_{1521}(808,\cdot)\)
\(\chi_{1521}(817,\cdot)\)
\(\chi_{1521}(877,\cdot)\)
\(\chi_{1521}(904,\cdot)\)
\(\chi_{1521}(994,\cdot)\)
\(\chi_{1521}(1021,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((677,847)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{107}{156}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(14\) | \(16\) | \(17\) |
\( \chi_{ 1521 }(1021, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{1}{52}\right)\) | \(e\left(\frac{1}{26}\right)\) | \(e\left(\frac{131}{156}\right)\) | \(e\left(\frac{113}{156}\right)\) | \(e\left(\frac{3}{52}\right)\) | \(e\left(\frac{67}{78}\right)\) | \(e\left(\frac{51}{52}\right)\) | \(e\left(\frac{29}{39}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{11}{78}\right)\) |
sage:chi.jacobi_sum(n)