sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(14700, base_ring=CyclotomicField(420))
M = H._module
chi = DirichletCharacter(H, M([210,210,399,310]))
pari:[g,chi] = znchar(Mod(8963,14700))
Modulus: | \(14700\) | |
Conductor: | \(14700\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(420\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{14700}(47,\cdot)\)
\(\chi_{14700}(383,\cdot)\)
\(\chi_{14700}(467,\cdot)\)
\(\chi_{14700}(563,\cdot)\)
\(\chi_{14700}(647,\cdot)\)
\(\chi_{14700}(887,\cdot)\)
\(\chi_{14700}(983,\cdot)\)
\(\chi_{14700}(1067,\cdot)\)
\(\chi_{14700}(1223,\cdot)\)
\(\chi_{14700}(1487,\cdot)\)
\(\chi_{14700}(1727,\cdot)\)
\(\chi_{14700}(1823,\cdot)\)
\(\chi_{14700}(2063,\cdot)\)
\(\chi_{14700}(2147,\cdot)\)
\(\chi_{14700}(2327,\cdot)\)
\(\chi_{14700}(2483,\cdot)\)
\(\chi_{14700}(2663,\cdot)\)
\(\chi_{14700}(2747,\cdot)\)
\(\chi_{14700}(2903,\cdot)\)
\(\chi_{14700}(2987,\cdot)\)
\(\chi_{14700}(3083,\cdot)\)
\(\chi_{14700}(3323,\cdot)\)
\(\chi_{14700}(3503,\cdot)\)
\(\chi_{14700}(3587,\cdot)\)
\(\chi_{14700}(3827,\cdot)\)
\(\chi_{14700}(3923,\cdot)\)
\(\chi_{14700}(4163,\cdot)\)
\(\chi_{14700}(4247,\cdot)\)
\(\chi_{14700}(4427,\cdot)\)
\(\chi_{14700}(4583,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((7351,4901,1177,9901)\) → \((-1,-1,e\left(\frac{19}{20}\right),e\left(\frac{31}{42}\right))\)
\(a\) |
\(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 14700 }(8963, a) \) |
\(1\) | \(1\) | \(e\left(\frac{76}{105}\right)\) | \(e\left(\frac{57}{140}\right)\) | \(e\left(\frac{127}{420}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{209}{420}\right)\) | \(e\left(\frac{24}{35}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{71}{420}\right)\) | \(e\left(\frac{13}{35}\right)\) | \(e\left(\frac{5}{28}\right)\) |
sage:chi.jacobi_sum(n)