Properties

Label 14700.8963
Modulus $14700$
Conductor $14700$
Order $420$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(14700, base_ring=CyclotomicField(420)) M = H._module chi = DirichletCharacter(H, M([210,210,399,310]))
 
Copy content pari:[g,chi] = znchar(Mod(8963,14700))
 

Basic properties

Modulus: \(14700\)
Conductor: \(14700\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(420\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 14700.hd

\(\chi_{14700}(47,\cdot)\) \(\chi_{14700}(383,\cdot)\) \(\chi_{14700}(467,\cdot)\) \(\chi_{14700}(563,\cdot)\) \(\chi_{14700}(647,\cdot)\) \(\chi_{14700}(887,\cdot)\) \(\chi_{14700}(983,\cdot)\) \(\chi_{14700}(1067,\cdot)\) \(\chi_{14700}(1223,\cdot)\) \(\chi_{14700}(1487,\cdot)\) \(\chi_{14700}(1727,\cdot)\) \(\chi_{14700}(1823,\cdot)\) \(\chi_{14700}(2063,\cdot)\) \(\chi_{14700}(2147,\cdot)\) \(\chi_{14700}(2327,\cdot)\) \(\chi_{14700}(2483,\cdot)\) \(\chi_{14700}(2663,\cdot)\) \(\chi_{14700}(2747,\cdot)\) \(\chi_{14700}(2903,\cdot)\) \(\chi_{14700}(2987,\cdot)\) \(\chi_{14700}(3083,\cdot)\) \(\chi_{14700}(3323,\cdot)\) \(\chi_{14700}(3503,\cdot)\) \(\chi_{14700}(3587,\cdot)\) \(\chi_{14700}(3827,\cdot)\) \(\chi_{14700}(3923,\cdot)\) \(\chi_{14700}(4163,\cdot)\) \(\chi_{14700}(4247,\cdot)\) \(\chi_{14700}(4427,\cdot)\) \(\chi_{14700}(4583,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{420})$
Fixed field: Number field defined by a degree 420 polynomial (not computed)

Values on generators

\((7351,4901,1177,9901)\) → \((-1,-1,e\left(\frac{19}{20}\right),e\left(\frac{31}{42}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 14700 }(8963, a) \) \(1\)\(1\)\(e\left(\frac{76}{105}\right)\)\(e\left(\frac{57}{140}\right)\)\(e\left(\frac{127}{420}\right)\)\(e\left(\frac{13}{30}\right)\)\(e\left(\frac{209}{420}\right)\)\(e\left(\frac{24}{35}\right)\)\(e\left(\frac{4}{15}\right)\)\(e\left(\frac{71}{420}\right)\)\(e\left(\frac{13}{35}\right)\)\(e\left(\frac{5}{28}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 14700 }(8963,a) \;\) at \(\;a = \) e.g. 2