sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1452, base_ring=CyclotomicField(110))
M = H._module
chi = DirichletCharacter(H, M([55,55,93]))
pari:[g,chi] = znchar(Mod(1427,1452))
Modulus: | \(1452\) | |
Conductor: | \(1452\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(110\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1452}(35,\cdot)\)
\(\chi_{1452}(83,\cdot)\)
\(\chi_{1452}(95,\cdot)\)
\(\chi_{1452}(107,\cdot)\)
\(\chi_{1452}(167,\cdot)\)
\(\chi_{1452}(227,\cdot)\)
\(\chi_{1452}(299,\cdot)\)
\(\chi_{1452}(347,\cdot)\)
\(\chi_{1452}(359,\cdot)\)
\(\chi_{1452}(371,\cdot)\)
\(\chi_{1452}(431,\cdot)\)
\(\chi_{1452}(479,\cdot)\)
\(\chi_{1452}(491,\cdot)\)
\(\chi_{1452}(503,\cdot)\)
\(\chi_{1452}(563,\cdot)\)
\(\chi_{1452}(611,\cdot)\)
\(\chi_{1452}(623,\cdot)\)
\(\chi_{1452}(635,\cdot)\)
\(\chi_{1452}(695,\cdot)\)
\(\chi_{1452}(743,\cdot)\)
\(\chi_{1452}(755,\cdot)\)
\(\chi_{1452}(767,\cdot)\)
\(\chi_{1452}(827,\cdot)\)
\(\chi_{1452}(875,\cdot)\)
\(\chi_{1452}(899,\cdot)\)
\(\chi_{1452}(1007,\cdot)\)
\(\chi_{1452}(1019,\cdot)\)
\(\chi_{1452}(1031,\cdot)\)
\(\chi_{1452}(1091,\cdot)\)
\(\chi_{1452}(1139,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((727,485,1333)\) → \((-1,-1,e\left(\frac{93}{110}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
\( \chi_{ 1452 }(1427, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{7}{110}\right)\) | \(e\left(\frac{23}{55}\right)\) | \(e\left(\frac{43}{110}\right)\) | \(e\left(\frac{51}{55}\right)\) | \(e\left(\frac{37}{55}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{7}{55}\right)\) | \(e\left(\frac{48}{55}\right)\) | \(e\left(\frac{23}{110}\right)\) | \(e\left(\frac{53}{110}\right)\) |
sage:chi.jacobi_sum(n)