sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1407, base_ring=CyclotomicField(66))
M = H._module
chi = DirichletCharacter(H, M([33,11,29]))
pari:[g,chi] = znchar(Mod(1319,1407))
| Modulus: | \(1407\) | |
| Conductor: | \(1407\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(66\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1407}(101,\cdot)\)
\(\chi_{1407}(152,\cdot)\)
\(\chi_{1407}(383,\cdot)\)
\(\chi_{1407}(404,\cdot)\)
\(\chi_{1407}(446,\cdot)\)
\(\chi_{1407}(500,\cdot)\)
\(\chi_{1407}(530,\cdot)\)
\(\chi_{1407}(593,\cdot)\)
\(\chi_{1407}(698,\cdot)\)
\(\chi_{1407}(815,\cdot)\)
\(\chi_{1407}(836,\cdot)\)
\(\chi_{1407}(878,\cdot)\)
\(\chi_{1407}(1025,\cdot)\)
\(\chi_{1407}(1046,\cdot)\)
\(\chi_{1407}(1055,\cdot)\)
\(\chi_{1407}(1151,\cdot)\)
\(\chi_{1407}(1286,\cdot)\)
\(\chi_{1407}(1319,\cdot)\)
\(\chi_{1407}(1391,\cdot)\)
\(\chi_{1407}(1403,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((470,1207,337)\) → \((-1,e\left(\frac{1}{6}\right),e\left(\frac{29}{66}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) |
| \( \chi_{ 1407 }(1319, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{61}{66}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{13}{66}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{28}{33}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{26}{33}\right)\) | \(e\left(\frac{5}{22}\right)\) |
sage:chi.jacobi_sum(n)