sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1407, base_ring=CyclotomicField(22))
M = H._module
chi = DirichletCharacter(H, M([11,11,19]))
pari:[g,chi] = znchar(Mod(1259,1407))
Modulus: | \(1407\) | |
Conductor: | \(1407\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(22\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1407}(125,\cdot)\)
\(\chi_{1407}(209,\cdot)\)
\(\chi_{1407}(377,\cdot)\)
\(\chi_{1407}(608,\cdot)\)
\(\chi_{1407}(713,\cdot)\)
\(\chi_{1407}(923,\cdot)\)
\(\chi_{1407}(965,\cdot)\)
\(\chi_{1407}(1259,\cdot)\)
\(\chi_{1407}(1343,\cdot)\)
\(\chi_{1407}(1385,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((470,1207,337)\) → \((-1,-1,e\left(\frac{19}{22}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) |
\( \chi_{ 1407 }(1259, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{3}{22}\right)\) |
sage:chi.jacobi_sum(n)