Properties

Label 1392.1061
Modulus $1392$
Conductor $1392$
Order $4$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1392, base_ring=CyclotomicField(4)) M = H._module chi = DirichletCharacter(H, M([0,1,2,3]))
 
Copy content pari:[g,chi] = znchar(Mod(1061,1392))
 

Basic properties

Modulus: \(1392\)
Conductor: \(1392\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(4\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1392.u

\(\chi_{1392}(1061,\cdot)\) \(\chi_{1392}(1085,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\mathbb{Q}(i)\)
Fixed field: 4.4.449538048.2

Values on generators

\((175,1045,929,1249)\) → \((1,i,-1,-i)\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(31\)\(35\)
\( \chi_{ 1392 }(1061, a) \) \(1\)\(1\)\(i\)\(-1\)\(-1\)\(i\)\(i\)\(-1\)\(1\)\(-1\)\(-i\)\(-i\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1392 }(1061,a) \;\) at \(\;a = \) e.g. 2