sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(139, base_ring=CyclotomicField(138))
M = H._module
chi = DirichletCharacter(H, M([16]))
pari:[g,chi] = znchar(Mod(67,139))
| Modulus: | \(139\) | |
| Conductor: | \(139\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(69\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{139}(4,\cdot)\)
\(\chi_{139}(5,\cdot)\)
\(\chi_{139}(7,\cdot)\)
\(\chi_{139}(9,\cdot)\)
\(\chi_{139}(11,\cdot)\)
\(\chi_{139}(13,\cdot)\)
\(\chi_{139}(16,\cdot)\)
\(\chi_{139}(20,\cdot)\)
\(\chi_{139}(24,\cdot)\)
\(\chi_{139}(25,\cdot)\)
\(\chi_{139}(28,\cdot)\)
\(\chi_{139}(29,\cdot)\)
\(\chi_{139}(30,\cdot)\)
\(\chi_{139}(31,\cdot)\)
\(\chi_{139}(35,\cdot)\)
\(\chi_{139}(37,\cdot)\)
\(\chi_{139}(38,\cdot)\)
\(\chi_{139}(41,\cdot)\)
\(\chi_{139}(46,\cdot)\)
\(\chi_{139}(47,\cdot)\)
\(\chi_{139}(49,\cdot)\)
\(\chi_{139}(51,\cdot)\)
\(\chi_{139}(54,\cdot)\)
\(\chi_{139}(66,\cdot)\)
\(\chi_{139}(67,\cdot)\)
\(\chi_{139}(69,\cdot)\)
\(\chi_{139}(71,\cdot)\)
\(\chi_{139}(78,\cdot)\)
\(\chi_{139}(81,\cdot)\)
\(\chi_{139}(83,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(2\) → \(e\left(\frac{8}{69}\right)\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
| \( \chi_{ 139 }(67, a) \) |
\(1\) | \(1\) | \(e\left(\frac{8}{69}\right)\) | \(e\left(\frac{52}{69}\right)\) | \(e\left(\frac{16}{69}\right)\) | \(e\left(\frac{67}{69}\right)\) | \(e\left(\frac{20}{23}\right)\) | \(e\left(\frac{55}{69}\right)\) | \(e\left(\frac{8}{23}\right)\) | \(e\left(\frac{35}{69}\right)\) | \(e\left(\frac{2}{23}\right)\) | \(e\left(\frac{56}{69}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)