Properties

Label 1360.829
Modulus $1360$
Conductor $1360$
Order $4$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1360, base_ring=CyclotomicField(4)) M = H._module chi = DirichletCharacter(H, M([0,3,2,1]))
 
Copy content pari:[g,chi] = znchar(Mod(829,1360))
 

Basic properties

Modulus: \(1360\)
Conductor: \(1360\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(4\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1360.ck

\(\chi_{1360}(829,\cdot)\) \(\chi_{1360}(1109,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\mathbb{Q}(i)\)
Fixed field: 4.4.251545600.1

Values on generators

\((511,341,817,241)\) → \((1,-i,-1,i)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 1360 }(829, a) \) \(1\)\(1\)\(1\)\(-i\)\(1\)\(-1\)\(-i\)\(-i\)\(-i\)\(-i\)\(1\)\(-1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1360 }(829,a) \;\) at \(\;a = \) e.g. 2