sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1360, base_ring=CyclotomicField(4))
M = H._module
chi = DirichletCharacter(H, M([0,3,2,1]))
pari:[g,chi] = znchar(Mod(829,1360))
Modulus: | \(1360\) | |
Conductor: | \(1360\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(4\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1360}(829,\cdot)\)
\(\chi_{1360}(1109,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((511,341,817,241)\) → \((1,-i,-1,i)\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(19\) | \(21\) | \(23\) | \(27\) | \(29\) |
\( \chi_{ 1360 }(829, a) \) |
\(1\) | \(1\) | \(1\) | \(-i\) | \(1\) | \(-1\) | \(-i\) | \(-i\) | \(-i\) | \(-i\) | \(1\) | \(-1\) |
sage:chi.jacobi_sum(n)