sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1360, base_ring=CyclotomicField(16))
M = H._module
chi = DirichletCharacter(H, M([8,4,8,11]))
pari:[g,chi] = znchar(Mod(619,1360))
Modulus: | \(1360\) | |
Conductor: | \(1360\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(16\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1360}(99,\cdot)\)
\(\chi_{1360}(299,\cdot)\)
\(\chi_{1360}(619,\cdot)\)
\(\chi_{1360}(819,\cdot)\)
\(\chi_{1360}(1059,\cdot)\)
\(\chi_{1360}(1099,\cdot)\)
\(\chi_{1360}(1179,\cdot)\)
\(\chi_{1360}(1219,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((511,341,817,241)\) → \((-1,i,-1,e\left(\frac{11}{16}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(19\) | \(21\) | \(23\) | \(27\) | \(29\) |
\( \chi_{ 1360 }(619, a) \) |
\(1\) | \(1\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(1\) | \(e\left(\frac{7}{8}\right)\) | \(-1\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{11}{16}\right)\) |
sage:chi.jacobi_sum(n)