Properties

Label 1360.619
Modulus $1360$
Conductor $1360$
Order $16$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1360, base_ring=CyclotomicField(16)) M = H._module chi = DirichletCharacter(H, M([8,4,8,11]))
 
Copy content pari:[g,chi] = znchar(Mod(619,1360))
 

Basic properties

Modulus: \(1360\)
Conductor: \(1360\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(16\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1360.ey

\(\chi_{1360}(99,\cdot)\) \(\chi_{1360}(299,\cdot)\) \(\chi_{1360}(619,\cdot)\) \(\chi_{1360}(819,\cdot)\) \(\chi_{1360}(1059,\cdot)\) \(\chi_{1360}(1099,\cdot)\) \(\chi_{1360}(1179,\cdot)\) \(\chi_{1360}(1219,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: 16.16.19670421429681891606270889164800000000.2

Values on generators

\((511,341,817,241)\) → \((-1,i,-1,e\left(\frac{11}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 1360 }(619, a) \) \(1\)\(1\)\(e\left(\frac{7}{16}\right)\)\(e\left(\frac{1}{16}\right)\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{9}{16}\right)\)\(1\)\(e\left(\frac{7}{8}\right)\)\(-1\)\(e\left(\frac{13}{16}\right)\)\(e\left(\frac{5}{16}\right)\)\(e\left(\frac{11}{16}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1360 }(619,a) \;\) at \(\;a = \) e.g. 2