sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1352, base_ring=CyclotomicField(78))
M = H._module
chi = DirichletCharacter(H, M([0,39,70]))
pari:[g,chi] = znchar(Mod(61,1352))
Modulus: | \(1352\) | |
Conductor: | \(1352\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(78\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1352}(29,\cdot)\)
\(\chi_{1352}(61,\cdot)\)
\(\chi_{1352}(133,\cdot)\)
\(\chi_{1352}(165,\cdot)\)
\(\chi_{1352}(237,\cdot)\)
\(\chi_{1352}(269,\cdot)\)
\(\chi_{1352}(341,\cdot)\)
\(\chi_{1352}(373,\cdot)\)
\(\chi_{1352}(445,\cdot)\)
\(\chi_{1352}(477,\cdot)\)
\(\chi_{1352}(549,\cdot)\)
\(\chi_{1352}(581,\cdot)\)
\(\chi_{1352}(685,\cdot)\)
\(\chi_{1352}(757,\cdot)\)
\(\chi_{1352}(789,\cdot)\)
\(\chi_{1352}(861,\cdot)\)
\(\chi_{1352}(893,\cdot)\)
\(\chi_{1352}(965,\cdot)\)
\(\chi_{1352}(997,\cdot)\)
\(\chi_{1352}(1069,\cdot)\)
\(\chi_{1352}(1101,\cdot)\)
\(\chi_{1352}(1173,\cdot)\)
\(\chi_{1352}(1277,\cdot)\)
\(\chi_{1352}(1309,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1015,677,1185)\) → \((1,-1,e\left(\frac{35}{39}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(15\) | \(17\) | \(19\) | \(21\) | \(23\) |
\( \chi_{ 1352 }(61, a) \) |
\(1\) | \(1\) | \(e\left(\frac{61}{78}\right)\) | \(e\left(\frac{15}{26}\right)\) | \(e\left(\frac{1}{39}\right)\) | \(e\left(\frac{22}{39}\right)\) | \(e\left(\frac{73}{78}\right)\) | \(e\left(\frac{14}{39}\right)\) | \(e\left(\frac{1}{39}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{21}{26}\right)\) | \(e\left(\frac{2}{3}\right)\) |
sage:chi.jacobi_sum(n)