sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1323, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([70,12]))
pari:[g,chi] = znchar(Mod(1159,1323))
Modulus: | \(1323\) | |
Conductor: | \(1323\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(63\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1323}(25,\cdot)\)
\(\chi_{1323}(58,\cdot)\)
\(\chi_{1323}(88,\cdot)\)
\(\chi_{1323}(121,\cdot)\)
\(\chi_{1323}(151,\cdot)\)
\(\chi_{1323}(184,\cdot)\)
\(\chi_{1323}(247,\cdot)\)
\(\chi_{1323}(277,\cdot)\)
\(\chi_{1323}(310,\cdot)\)
\(\chi_{1323}(340,\cdot)\)
\(\chi_{1323}(403,\cdot)\)
\(\chi_{1323}(436,\cdot)\)
\(\chi_{1323}(466,\cdot)\)
\(\chi_{1323}(499,\cdot)\)
\(\chi_{1323}(529,\cdot)\)
\(\chi_{1323}(562,\cdot)\)
\(\chi_{1323}(592,\cdot)\)
\(\chi_{1323}(625,\cdot)\)
\(\chi_{1323}(688,\cdot)\)
\(\chi_{1323}(718,\cdot)\)
\(\chi_{1323}(751,\cdot)\)
\(\chi_{1323}(781,\cdot)\)
\(\chi_{1323}(844,\cdot)\)
\(\chi_{1323}(877,\cdot)\)
\(\chi_{1323}(907,\cdot)\)
\(\chi_{1323}(940,\cdot)\)
\(\chi_{1323}(970,\cdot)\)
\(\chi_{1323}(1003,\cdot)\)
\(\chi_{1323}(1033,\cdot)\)
\(\chi_{1323}(1066,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((785,1081)\) → \((e\left(\frac{5}{9}\right),e\left(\frac{2}{21}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) |
\( \chi_{ 1323 }(1159, a) \) |
\(1\) | \(1\) | \(e\left(\frac{2}{63}\right)\) | \(e\left(\frac{4}{63}\right)\) | \(e\left(\frac{34}{63}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{2}{63}\right)\) | \(e\left(\frac{37}{63}\right)\) | \(e\left(\frac{8}{63}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(1\) |
sage:chi.jacobi_sum(n)