sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1323, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([49,9]))
pari:[g,chi] = znchar(Mod(1154,1323))
Modulus: | \(1323\) | |
Conductor: | \(1323\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(126\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1323}(20,\cdot)\)
\(\chi_{1323}(41,\cdot)\)
\(\chi_{1323}(83,\cdot)\)
\(\chi_{1323}(104,\cdot)\)
\(\chi_{1323}(167,\cdot)\)
\(\chi_{1323}(209,\cdot)\)
\(\chi_{1323}(230,\cdot)\)
\(\chi_{1323}(272,\cdot)\)
\(\chi_{1323}(335,\cdot)\)
\(\chi_{1323}(356,\cdot)\)
\(\chi_{1323}(398,\cdot)\)
\(\chi_{1323}(419,\cdot)\)
\(\chi_{1323}(461,\cdot)\)
\(\chi_{1323}(482,\cdot)\)
\(\chi_{1323}(524,\cdot)\)
\(\chi_{1323}(545,\cdot)\)
\(\chi_{1323}(608,\cdot)\)
\(\chi_{1323}(650,\cdot)\)
\(\chi_{1323}(671,\cdot)\)
\(\chi_{1323}(713,\cdot)\)
\(\chi_{1323}(776,\cdot)\)
\(\chi_{1323}(797,\cdot)\)
\(\chi_{1323}(839,\cdot)\)
\(\chi_{1323}(860,\cdot)\)
\(\chi_{1323}(902,\cdot)\)
\(\chi_{1323}(923,\cdot)\)
\(\chi_{1323}(965,\cdot)\)
\(\chi_{1323}(986,\cdot)\)
\(\chi_{1323}(1049,\cdot)\)
\(\chi_{1323}(1091,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((785,1081)\) → \((e\left(\frac{7}{18}\right),e\left(\frac{1}{14}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) |
\( \chi_{ 1323 }(1154, a) \) |
\(1\) | \(1\) | \(e\left(\frac{31}{126}\right)\) | \(e\left(\frac{31}{63}\right)\) | \(e\left(\frac{1}{63}\right)\) | \(e\left(\frac{31}{42}\right)\) | \(e\left(\frac{11}{42}\right)\) | \(e\left(\frac{115}{126}\right)\) | \(e\left(\frac{59}{126}\right)\) | \(e\left(\frac{62}{63}\right)\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{1}{6}\right)\) |
sage:chi.jacobi_sum(n)