Properties

Label 1248.149
Modulus $1248$
Conductor $1248$
Order $24$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1248, base_ring=CyclotomicField(24)) M = H._module chi = DirichletCharacter(H, M([0,15,12,10]))
 
Copy content pari:[g,chi] = znchar(Mod(149,1248))
 

Basic properties

Modulus: \(1248\)
Conductor: \(1248\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(24\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1248.eg

\(\chi_{1248}(149,\cdot)\) \(\chi_{1248}(197,\cdot)\) \(\chi_{1248}(557,\cdot)\) \(\chi_{1248}(605,\cdot)\) \(\chi_{1248}(773,\cdot)\) \(\chi_{1248}(821,\cdot)\) \(\chi_{1248}(1181,\cdot)\) \(\chi_{1248}(1229,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{24})\)
Fixed field: 24.24.16904347199414056104328762948868038424314680688314698170368.1

Values on generators

\((703,1093,833,769)\) → \((1,e\left(\frac{5}{8}\right),-1,e\left(\frac{5}{12}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 1248 }(149, a) \) \(1\)\(1\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{13}{24}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{11}{24}\right)\)\(e\left(\frac{5}{12}\right)\)\(-i\)\(e\left(\frac{1}{24}\right)\)\(-i\)\(e\left(\frac{17}{24}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1248 }(149,a) \;\) at \(\;a = \) e.g. 2