sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(123, base_ring=CyclotomicField(40))
M = H._module
chi = DirichletCharacter(H, M([20,29]))
pari:[g,chi] = znchar(Mod(104,123))
Modulus: | \(123\) | |
Conductor: | \(123\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(40\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{123}(11,\cdot)\)
\(\chi_{123}(17,\cdot)\)
\(\chi_{123}(26,\cdot)\)
\(\chi_{123}(29,\cdot)\)
\(\chi_{123}(35,\cdot)\)
\(\chi_{123}(47,\cdot)\)
\(\chi_{123}(53,\cdot)\)
\(\chi_{123}(56,\cdot)\)
\(\chi_{123}(65,\cdot)\)
\(\chi_{123}(71,\cdot)\)
\(\chi_{123}(89,\cdot)\)
\(\chi_{123}(95,\cdot)\)
\(\chi_{123}(101,\cdot)\)
\(\chi_{123}(104,\cdot)\)
\(\chi_{123}(110,\cdot)\)
\(\chi_{123}(116,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((83,88)\) → \((-1,e\left(\frac{29}{40}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(13\) | \(14\) | \(16\) |
\( \chi_{ 123 }(104, a) \) |
\(1\) | \(1\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{11}{40}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{27}{40}\right)\) | \(e\left(\frac{19}{40}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{2}{5}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)