Properties

Modulus $1201$
Structure \(C_{1200}\)
Order $1200$

Learn more

Show commands: Pari/GP / SageMath

Copy content sage:H = DirichletGroup(1201)
 
Copy content pari:g = idealstar(,1201,2)
 

Character group

Copy content sage:G.order()
 
Copy content pari:g.no
 
Order = 1200
Copy content sage:H.invariants()
 
Copy content pari:g.cyc
 
Structure = \(C_{1200}\)
Copy content sage:H.gens()
 
Copy content pari:g.gen
 
Generators = $\chi_{1201}(11,\cdot)$

First 32 of 1200 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(7\) \(8\) \(9\) \(10\) \(11\)
\(\chi_{1201}(1,\cdot)\) 1201.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{1201}(2,\cdot)\) 1201.ba 300 yes \(1\) \(1\) \(e\left(\frac{64}{75}\right)\) \(e\left(\frac{1}{75}\right)\) \(e\left(\frac{53}{75}\right)\) \(e\left(\frac{43}{150}\right)\) \(e\left(\frac{13}{15}\right)\) \(-1\) \(e\left(\frac{14}{25}\right)\) \(e\left(\frac{2}{75}\right)\) \(e\left(\frac{7}{50}\right)\) \(e\left(\frac{283}{300}\right)\)
\(\chi_{1201}(3,\cdot)\) 1201.ba 300 yes \(1\) \(1\) \(e\left(\frac{1}{75}\right)\) \(e\left(\frac{34}{75}\right)\) \(e\left(\frac{2}{75}\right)\) \(e\left(\frac{37}{150}\right)\) \(e\left(\frac{7}{15}\right)\) \(-1\) \(e\left(\frac{1}{25}\right)\) \(e\left(\frac{68}{75}\right)\) \(e\left(\frac{13}{50}\right)\) \(e\left(\frac{97}{300}\right)\)
\(\chi_{1201}(4,\cdot)\) 1201.x 150 yes \(1\) \(1\) \(e\left(\frac{53}{75}\right)\) \(e\left(\frac{2}{75}\right)\) \(e\left(\frac{31}{75}\right)\) \(e\left(\frac{43}{75}\right)\) \(e\left(\frac{11}{15}\right)\) \(1\) \(e\left(\frac{3}{25}\right)\) \(e\left(\frac{4}{75}\right)\) \(e\left(\frac{7}{25}\right)\) \(e\left(\frac{133}{150}\right)\)
\(\chi_{1201}(5,\cdot)\) 1201.bc 600 yes \(1\) \(1\) \(e\left(\frac{43}{150}\right)\) \(e\left(\frac{37}{150}\right)\) \(e\left(\frac{43}{75}\right)\) \(e\left(\frac{241}{300}\right)\) \(e\left(\frac{8}{15}\right)\) \(-i\) \(e\left(\frac{43}{50}\right)\) \(e\left(\frac{37}{75}\right)\) \(e\left(\frac{9}{100}\right)\) \(e\left(\frac{421}{600}\right)\)
\(\chi_{1201}(6,\cdot)\) 1201.j 15 yes \(1\) \(1\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{4}{15}\right)\)
\(\chi_{1201}(7,\cdot)\) 1201.g 8 yes \(1\) \(1\) \(-1\) \(-1\) \(1\) \(-i\) \(1\) \(-i\) \(-1\) \(1\) \(i\) \(e\left(\frac{3}{8}\right)\)
\(\chi_{1201}(8,\cdot)\) 1201.v 100 yes \(1\) \(1\) \(e\left(\frac{14}{25}\right)\) \(e\left(\frac{1}{25}\right)\) \(e\left(\frac{3}{25}\right)\) \(e\left(\frac{43}{50}\right)\) \(e\left(\frac{3}{5}\right)\) \(-1\) \(e\left(\frac{17}{25}\right)\) \(e\left(\frac{2}{25}\right)\) \(e\left(\frac{21}{50}\right)\) \(e\left(\frac{83}{100}\right)\)
\(\chi_{1201}(9,\cdot)\) 1201.x 150 yes \(1\) \(1\) \(e\left(\frac{2}{75}\right)\) \(e\left(\frac{68}{75}\right)\) \(e\left(\frac{4}{75}\right)\) \(e\left(\frac{37}{75}\right)\) \(e\left(\frac{14}{15}\right)\) \(1\) \(e\left(\frac{2}{25}\right)\) \(e\left(\frac{61}{75}\right)\) \(e\left(\frac{13}{25}\right)\) \(e\left(\frac{97}{150}\right)\)
\(\chi_{1201}(10,\cdot)\) 1201.y 200 yes \(1\) \(1\) \(e\left(\frac{7}{50}\right)\) \(e\left(\frac{13}{50}\right)\) \(e\left(\frac{7}{25}\right)\) \(e\left(\frac{9}{100}\right)\) \(e\left(\frac{2}{5}\right)\) \(i\) \(e\left(\frac{21}{50}\right)\) \(e\left(\frac{13}{25}\right)\) \(e\left(\frac{23}{100}\right)\) \(e\left(\frac{129}{200}\right)\)
\(\chi_{1201}(11,\cdot)\) 1201.bd 1200 yes \(-1\) \(1\) \(e\left(\frac{283}{300}\right)\) \(e\left(\frac{97}{300}\right)\) \(e\left(\frac{133}{150}\right)\) \(e\left(\frac{421}{600}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{83}{100}\right)\) \(e\left(\frac{97}{150}\right)\) \(e\left(\frac{129}{200}\right)\) \(e\left(\frac{1}{1200}\right)\)
\(\chi_{1201}(12,\cdot)\) 1201.v 100 yes \(1\) \(1\) \(e\left(\frac{18}{25}\right)\) \(e\left(\frac{12}{25}\right)\) \(e\left(\frac{11}{25}\right)\) \(e\left(\frac{41}{50}\right)\) \(e\left(\frac{1}{5}\right)\) \(-1\) \(e\left(\frac{4}{25}\right)\) \(e\left(\frac{24}{25}\right)\) \(e\left(\frac{27}{50}\right)\) \(e\left(\frac{21}{100}\right)\)
\(\chi_{1201}(13,\cdot)\) 1201.bb 400 yes \(-1\) \(1\) \(e\left(\frac{69}{100}\right)\) \(e\left(\frac{71}{100}\right)\) \(e\left(\frac{19}{50}\right)\) \(e\left(\frac{3}{200}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{7}{100}\right)\) \(e\left(\frac{21}{50}\right)\) \(e\left(\frac{141}{200}\right)\) \(e\left(\frac{143}{400}\right)\)
\(\chi_{1201}(14,\cdot)\) 1201.bc 600 yes \(1\) \(1\) \(e\left(\frac{53}{150}\right)\) \(e\left(\frac{77}{150}\right)\) \(e\left(\frac{53}{75}\right)\) \(e\left(\frac{11}{300}\right)\) \(e\left(\frac{13}{15}\right)\) \(i\) \(e\left(\frac{3}{50}\right)\) \(e\left(\frac{2}{75}\right)\) \(e\left(\frac{39}{100}\right)\) \(e\left(\frac{191}{600}\right)\)
\(\chi_{1201}(15,\cdot)\) 1201.p 40 yes \(1\) \(1\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{20}\right)\) \(1\) \(i\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{1}{40}\right)\)
\(\chi_{1201}(16,\cdot)\) 1201.t 75 yes \(1\) \(1\) \(e\left(\frac{31}{75}\right)\) \(e\left(\frac{4}{75}\right)\) \(e\left(\frac{62}{75}\right)\) \(e\left(\frac{11}{75}\right)\) \(e\left(\frac{7}{15}\right)\) \(1\) \(e\left(\frac{6}{25}\right)\) \(e\left(\frac{8}{75}\right)\) \(e\left(\frac{14}{25}\right)\) \(e\left(\frac{58}{75}\right)\)
\(\chi_{1201}(17,\cdot)\) 1201.bd 1200 yes \(-1\) \(1\) \(e\left(\frac{91}{300}\right)\) \(e\left(\frac{169}{300}\right)\) \(e\left(\frac{91}{150}\right)\) \(e\left(\frac{517}{600}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{91}{100}\right)\) \(e\left(\frac{19}{150}\right)\) \(e\left(\frac{33}{200}\right)\) \(e\left(\frac{577}{1200}\right)\)
\(\chi_{1201}(18,\cdot)\) 1201.v 100 yes \(1\) \(1\) \(e\left(\frac{22}{25}\right)\) \(e\left(\frac{23}{25}\right)\) \(e\left(\frac{19}{25}\right)\) \(e\left(\frac{39}{50}\right)\) \(e\left(\frac{4}{5}\right)\) \(-1\) \(e\left(\frac{16}{25}\right)\) \(e\left(\frac{21}{25}\right)\) \(e\left(\frac{33}{50}\right)\) \(e\left(\frac{59}{100}\right)\)
\(\chi_{1201}(19,\cdot)\) 1201.y 200 yes \(1\) \(1\) \(e\left(\frac{9}{50}\right)\) \(e\left(\frac{31}{50}\right)\) \(e\left(\frac{9}{25}\right)\) \(e\left(\frac{33}{100}\right)\) \(e\left(\frac{4}{5}\right)\) \(i\) \(e\left(\frac{27}{50}\right)\) \(e\left(\frac{6}{25}\right)\) \(e\left(\frac{51}{100}\right)\) \(e\left(\frac{73}{200}\right)\)
\(\chi_{1201}(20,\cdot)\) 1201.bc 600 yes \(1\) \(1\) \(e\left(\frac{149}{150}\right)\) \(e\left(\frac{41}{150}\right)\) \(e\left(\frac{74}{75}\right)\) \(e\left(\frac{113}{300}\right)\) \(e\left(\frac{4}{15}\right)\) \(-i\) \(e\left(\frac{49}{50}\right)\) \(e\left(\frac{41}{75}\right)\) \(e\left(\frac{37}{100}\right)\) \(e\left(\frac{353}{600}\right)\)
\(\chi_{1201}(21,\cdot)\) 1201.bc 600 yes \(1\) \(1\) \(e\left(\frac{77}{150}\right)\) \(e\left(\frac{143}{150}\right)\) \(e\left(\frac{2}{75}\right)\) \(e\left(\frac{299}{300}\right)\) \(e\left(\frac{7}{15}\right)\) \(i\) \(e\left(\frac{27}{50}\right)\) \(e\left(\frac{68}{75}\right)\) \(e\left(\frac{51}{100}\right)\) \(e\left(\frac{419}{600}\right)\)
\(\chi_{1201}(22,\cdot)\) 1201.bd 1200 yes \(-1\) \(1\) \(e\left(\frac{239}{300}\right)\) \(e\left(\frac{101}{300}\right)\) \(e\left(\frac{89}{150}\right)\) \(e\left(\frac{593}{600}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{39}{100}\right)\) \(e\left(\frac{101}{150}\right)\) \(e\left(\frac{157}{200}\right)\) \(e\left(\frac{1133}{1200}\right)\)
\(\chi_{1201}(23,\cdot)\) 1201.bb 400 yes \(-1\) \(1\) \(e\left(\frac{89}{100}\right)\) \(e\left(\frac{51}{100}\right)\) \(e\left(\frac{39}{50}\right)\) \(e\left(\frac{43}{200}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{67}{100}\right)\) \(e\left(\frac{1}{50}\right)\) \(e\left(\frac{21}{200}\right)\) \(e\left(\frac{383}{400}\right)\)
\(\chi_{1201}(24,\cdot)\) 1201.x 150 yes \(1\) \(1\) \(e\left(\frac{43}{75}\right)\) \(e\left(\frac{37}{75}\right)\) \(e\left(\frac{11}{75}\right)\) \(e\left(\frac{8}{75}\right)\) \(e\left(\frac{1}{15}\right)\) \(1\) \(e\left(\frac{18}{25}\right)\) \(e\left(\frac{74}{75}\right)\) \(e\left(\frac{17}{25}\right)\) \(e\left(\frac{23}{150}\right)\)
\(\chi_{1201}(25,\cdot)\) 1201.ba 300 yes \(1\) \(1\) \(e\left(\frac{43}{75}\right)\) \(e\left(\frac{37}{75}\right)\) \(e\left(\frac{11}{75}\right)\) \(e\left(\frac{91}{150}\right)\) \(e\left(\frac{1}{15}\right)\) \(-1\) \(e\left(\frac{18}{25}\right)\) \(e\left(\frac{74}{75}\right)\) \(e\left(\frac{9}{50}\right)\) \(e\left(\frac{121}{300}\right)\)
\(\chi_{1201}(26,\cdot)\) 1201.bd 1200 yes \(-1\) \(1\) \(e\left(\frac{163}{300}\right)\) \(e\left(\frac{217}{300}\right)\) \(e\left(\frac{13}{150}\right)\) \(e\left(\frac{181}{600}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{63}{100}\right)\) \(e\left(\frac{67}{150}\right)\) \(e\left(\frac{169}{200}\right)\) \(e\left(\frac{361}{1200}\right)\)
\(\chi_{1201}(27,\cdot)\) 1201.v 100 yes \(1\) \(1\) \(e\left(\frac{1}{25}\right)\) \(e\left(\frac{9}{25}\right)\) \(e\left(\frac{2}{25}\right)\) \(e\left(\frac{37}{50}\right)\) \(e\left(\frac{2}{5}\right)\) \(-1\) \(e\left(\frac{3}{25}\right)\) \(e\left(\frac{18}{25}\right)\) \(e\left(\frac{39}{50}\right)\) \(e\left(\frac{97}{100}\right)\)
\(\chi_{1201}(28,\cdot)\) 1201.bc 600 yes \(1\) \(1\) \(e\left(\frac{31}{150}\right)\) \(e\left(\frac{79}{150}\right)\) \(e\left(\frac{31}{75}\right)\) \(e\left(\frac{97}{300}\right)\) \(e\left(\frac{11}{15}\right)\) \(-i\) \(e\left(\frac{31}{50}\right)\) \(e\left(\frac{4}{75}\right)\) \(e\left(\frac{53}{100}\right)\) \(e\left(\frac{157}{600}\right)\)
\(\chi_{1201}(29,\cdot)\) 1201.bd 1200 yes \(-1\) \(1\) \(e\left(\frac{281}{300}\right)\) \(e\left(\frac{179}{300}\right)\) \(e\left(\frac{131}{150}\right)\) \(e\left(\frac{347}{600}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{81}{100}\right)\) \(e\left(\frac{29}{150}\right)\) \(e\left(\frac{103}{200}\right)\) \(e\left(\frac{1007}{1200}\right)\)
\(\chi_{1201}(30,\cdot)\) 1201.bc 600 yes \(1\) \(1\) \(e\left(\frac{23}{150}\right)\) \(e\left(\frac{107}{150}\right)\) \(e\left(\frac{23}{75}\right)\) \(e\left(\frac{101}{300}\right)\) \(e\left(\frac{13}{15}\right)\) \(-i\) \(e\left(\frac{23}{50}\right)\) \(e\left(\frac{32}{75}\right)\) \(e\left(\frac{49}{100}\right)\) \(e\left(\frac{581}{600}\right)\)
\(\chi_{1201}(31,\cdot)\) 1201.bd 1200 yes \(-1\) \(1\) \(e\left(\frac{257}{300}\right)\) \(e\left(\frac{263}{300}\right)\) \(e\left(\frac{107}{150}\right)\) \(e\left(\frac{359}{600}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{57}{100}\right)\) \(e\left(\frac{113}{150}\right)\) \(e\left(\frac{91}{200}\right)\) \(e\left(\frac{179}{1200}\right)\)
\(\chi_{1201}(32,\cdot)\) 1201.s 60 yes \(1\) \(1\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{43}{60}\right)\)
Click here to search among the remaining 1168 characters.