sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1183, base_ring=CyclotomicField(156))
M = H._module
chi = DirichletCharacter(H, M([26,115]))
pari:[g,chi] = znchar(Mod(1116,1183))
Modulus: | \(1183\) | |
Conductor: | \(1183\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(156\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1183}(24,\cdot)\)
\(\chi_{1183}(33,\cdot)\)
\(\chi_{1183}(110,\cdot)\)
\(\chi_{1183}(115,\cdot)\)
\(\chi_{1183}(124,\cdot)\)
\(\chi_{1183}(171,\cdot)\)
\(\chi_{1183}(201,\cdot)\)
\(\chi_{1183}(206,\cdot)\)
\(\chi_{1183}(215,\cdot)\)
\(\chi_{1183}(262,\cdot)\)
\(\chi_{1183}(292,\cdot)\)
\(\chi_{1183}(297,\cdot)\)
\(\chi_{1183}(306,\cdot)\)
\(\chi_{1183}(353,\cdot)\)
\(\chi_{1183}(383,\cdot)\)
\(\chi_{1183}(388,\cdot)\)
\(\chi_{1183}(397,\cdot)\)
\(\chi_{1183}(444,\cdot)\)
\(\chi_{1183}(474,\cdot)\)
\(\chi_{1183}(479,\cdot)\)
\(\chi_{1183}(535,\cdot)\)
\(\chi_{1183}(565,\cdot)\)
\(\chi_{1183}(570,\cdot)\)
\(\chi_{1183}(579,\cdot)\)
\(\chi_{1183}(626,\cdot)\)
\(\chi_{1183}(656,\cdot)\)
\(\chi_{1183}(661,\cdot)\)
\(\chi_{1183}(670,\cdot)\)
\(\chi_{1183}(717,\cdot)\)
\(\chi_{1183}(747,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((339,1016)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{115}{156}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
\( \chi_{ 1183 }(1116, a) \) |
\(1\) | \(1\) | \(e\left(\frac{11}{156}\right)\) | \(e\left(\frac{15}{26}\right)\) | \(e\left(\frac{11}{78}\right)\) | \(e\left(\frac{73}{156}\right)\) | \(e\left(\frac{101}{156}\right)\) | \(e\left(\frac{11}{52}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{7}{13}\right)\) | \(e\left(\frac{31}{52}\right)\) | \(e\left(\frac{28}{39}\right)\) |
sage:chi.jacobi_sum(n)