sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1183, base_ring=CyclotomicField(78))
M = H._module
chi = DirichletCharacter(H, M([52,75]))
pari:[g,chi] = znchar(Mod(1117,1183))
Modulus: | \(1183\) | |
Conductor: | \(1183\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(78\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1183}(25,\cdot)\)
\(\chi_{1183}(51,\cdot)\)
\(\chi_{1183}(116,\cdot)\)
\(\chi_{1183}(142,\cdot)\)
\(\chi_{1183}(207,\cdot)\)
\(\chi_{1183}(233,\cdot)\)
\(\chi_{1183}(298,\cdot)\)
\(\chi_{1183}(324,\cdot)\)
\(\chi_{1183}(389,\cdot)\)
\(\chi_{1183}(415,\cdot)\)
\(\chi_{1183}(480,\cdot)\)
\(\chi_{1183}(571,\cdot)\)
\(\chi_{1183}(597,\cdot)\)
\(\chi_{1183}(662,\cdot)\)
\(\chi_{1183}(688,\cdot)\)
\(\chi_{1183}(753,\cdot)\)
\(\chi_{1183}(779,\cdot)\)
\(\chi_{1183}(870,\cdot)\)
\(\chi_{1183}(935,\cdot)\)
\(\chi_{1183}(961,\cdot)\)
\(\chi_{1183}(1026,\cdot)\)
\(\chi_{1183}(1052,\cdot)\)
\(\chi_{1183}(1117,\cdot)\)
\(\chi_{1183}(1143,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((339,1016)\) → \((e\left(\frac{2}{3}\right),e\left(\frac{25}{26}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
\( \chi_{ 1183 }(1117, a) \) |
\(1\) | \(1\) | \(e\left(\frac{23}{78}\right)\) | \(e\left(\frac{35}{39}\right)\) | \(e\left(\frac{23}{39}\right)\) | \(e\left(\frac{77}{78}\right)\) | \(e\left(\frac{5}{26}\right)\) | \(e\left(\frac{23}{26}\right)\) | \(e\left(\frac{31}{39}\right)\) | \(e\left(\frac{11}{39}\right)\) | \(e\left(\frac{55}{78}\right)\) | \(e\left(\frac{19}{39}\right)\) |
sage:chi.jacobi_sum(n)