sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1183, base_ring=CyclotomicField(156))
M = H._module
chi = DirichletCharacter(H, M([26,131]))
pari:[g,chi] = znchar(Mod(1060,1183))
Modulus: | \(1183\) | |
Conductor: | \(1183\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(156\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1183}(45,\cdot)\)
\(\chi_{1183}(54,\cdot)\)
\(\chi_{1183}(59,\cdot)\)
\(\chi_{1183}(136,\cdot)\)
\(\chi_{1183}(145,\cdot)\)
\(\chi_{1183}(180,\cdot)\)
\(\chi_{1183}(227,\cdot)\)
\(\chi_{1183}(236,\cdot)\)
\(\chi_{1183}(241,\cdot)\)
\(\chi_{1183}(271,\cdot)\)
\(\chi_{1183}(318,\cdot)\)
\(\chi_{1183}(327,\cdot)\)
\(\chi_{1183}(332,\cdot)\)
\(\chi_{1183}(362,\cdot)\)
\(\chi_{1183}(409,\cdot)\)
\(\chi_{1183}(423,\cdot)\)
\(\chi_{1183}(453,\cdot)\)
\(\chi_{1183}(500,\cdot)\)
\(\chi_{1183}(509,\cdot)\)
\(\chi_{1183}(514,\cdot)\)
\(\chi_{1183}(544,\cdot)\)
\(\chi_{1183}(591,\cdot)\)
\(\chi_{1183}(600,\cdot)\)
\(\chi_{1183}(605,\cdot)\)
\(\chi_{1183}(635,\cdot)\)
\(\chi_{1183}(682,\cdot)\)
\(\chi_{1183}(691,\cdot)\)
\(\chi_{1183}(696,\cdot)\)
\(\chi_{1183}(726,\cdot)\)
\(\chi_{1183}(773,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((339,1016)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{131}{156}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
\( \chi_{ 1183 }(1060, a) \) |
\(1\) | \(1\) | \(e\left(\frac{9}{52}\right)\) | \(e\left(\frac{23}{78}\right)\) | \(e\left(\frac{9}{26}\right)\) | \(e\left(\frac{61}{156}\right)\) | \(e\left(\frac{73}{156}\right)\) | \(e\left(\frac{27}{52}\right)\) | \(e\left(\frac{23}{39}\right)\) | \(e\left(\frac{22}{39}\right)\) | \(e\left(\frac{25}{156}\right)\) | \(e\left(\frac{25}{39}\right)\) |
sage:chi.jacobi_sum(n)