sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1183, base_ring=CyclotomicField(78))
M = H._module
chi = DirichletCharacter(H, M([26,5]))
pari:[g,chi] = znchar(Mod(1024,1183))
Modulus: | \(1183\) | |
Conductor: | \(1183\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(78\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1183}(4,\cdot)\)
\(\chi_{1183}(95,\cdot)\)
\(\chi_{1183}(114,\cdot)\)
\(\chi_{1183}(186,\cdot)\)
\(\chi_{1183}(205,\cdot)\)
\(\chi_{1183}(277,\cdot)\)
\(\chi_{1183}(296,\cdot)\)
\(\chi_{1183}(368,\cdot)\)
\(\chi_{1183}(387,\cdot)\)
\(\chi_{1183}(459,\cdot)\)
\(\chi_{1183}(478,\cdot)\)
\(\chi_{1183}(550,\cdot)\)
\(\chi_{1183}(569,\cdot)\)
\(\chi_{1183}(641,\cdot)\)
\(\chi_{1183}(660,\cdot)\)
\(\chi_{1183}(732,\cdot)\)
\(\chi_{1183}(751,\cdot)\)
\(\chi_{1183}(842,\cdot)\)
\(\chi_{1183}(914,\cdot)\)
\(\chi_{1183}(933,\cdot)\)
\(\chi_{1183}(1005,\cdot)\)
\(\chi_{1183}(1024,\cdot)\)
\(\chi_{1183}(1096,\cdot)\)
\(\chi_{1183}(1115,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((339,1016)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{5}{78}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
\( \chi_{ 1183 }(1024, a) \) |
\(1\) | \(1\) | \(e\left(\frac{19}{26}\right)\) | \(e\left(\frac{11}{39}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{19}{78}\right)\) | \(e\left(\frac{1}{78}\right)\) | \(e\left(\frac{5}{26}\right)\) | \(e\left(\frac{22}{39}\right)\) | \(e\left(\frac{38}{39}\right)\) | \(e\left(\frac{73}{78}\right)\) | \(e\left(\frac{29}{39}\right)\) |
sage:chi.jacobi_sum(n)